The Steiner subratio of five points on a~plane and four points in three-dimensional space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 167-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Steiner subratio is a fundamental characteristic of a metric space, introduced by A. Ivanov and A. Tuzhilin. This work tries to estimate this subratio for five-point sets on a plane and four-point sets in three-dimensional space.
@article{FPM_2013_18_2_a13,
     author = {Z. N. Ovsyannikov},
     title = {The {Steiner} subratio of five points on a~plane and four points in three-dimensional space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--179},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a13/}
}
TY  - JOUR
AU  - Z. N. Ovsyannikov
TI  - The Steiner subratio of five points on a~plane and four points in three-dimensional space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 167
EP  - 179
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a13/
LA  - ru
ID  - FPM_2013_18_2_a13
ER  - 
%0 Journal Article
%A Z. N. Ovsyannikov
%T The Steiner subratio of five points on a~plane and four points in three-dimensional space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 167-179
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a13/
%G ru
%F FPM_2013_18_2_a13
Z. N. Ovsyannikov. The Steiner subratio of five points on a~plane and four points in three-dimensional space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 167-179. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a13/

[1] Erëmin A. Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Mat. sb., 204:9 (2013), 51–72 | DOI | Zbl

[2] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[3] Laut I., Stepanova E., V pechati

[4] Rublëva O., arXiv (to appear)

[5] Strelkova N., V pechati

[6] Ding-Zhu Du, Hwang F. K., Yao E. Y., “The Steiner ratio conjecture is true for five points”, J. Combin. Theory Ser. A, 38 (1985), 230–240 | DOI | MR