The Steiner subratio of five points on a plane and four points in three-dimensional space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 167-179
The Steiner subratio is a fundamental characteristic of a metric space, introduced by A. Ivanov and A. Tuzhilin. This work tries to estimate this subratio for five-point sets on a plane and four-point sets in three-dimensional space.
@article{FPM_2013_18_2_a13,
author = {Z. N. Ovsyannikov},
title = {The {Steiner} subratio of five points on a~plane and four points in three-dimensional space},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {167--179},
year = {2013},
volume = {18},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a13/}
}
TY - JOUR AU - Z. N. Ovsyannikov TI - The Steiner subratio of five points on a plane and four points in three-dimensional space JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 167 EP - 179 VL - 18 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a13/ LA - ru ID - FPM_2013_18_2_a13 ER -
Z. N. Ovsyannikov. The Steiner subratio of five points on a plane and four points in three-dimensional space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 167-179. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a13/
[1] Erëmin A. Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Mat. sb., 204:9 (2013), 51–72 | DOI | Zbl
[2] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl
[3] Laut I., Stepanova E., V pechati
[4] Rublëva O., arXiv (to appear)
[5] Strelkova N., V pechati
[6] Ding-Zhu Du, Hwang F. K., Yao E. Y., “The Steiner ratio conjecture is true for five points”, J. Combin. Theory Ser. A, 38 (1985), 230–240 | DOI | MR