The Steiner and Gromov–Steiner ratios and Steiner subratio in the space of compacta in the Euclidean plane with Hausdorff distance
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 157-165
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Steiner and Gromov–Steiner ratios and Steiner subratio are fundamental characteristics of metric spaces. In this work, an attempt is made to find these ratios for the space of compacts in Euclidean space with Hausdorff metric.
@article{FPM_2013_18_2_a12,
     author = {Z. N. Ovsyannikov},
     title = {The {Steiner} and {Gromov{\textendash}Steiner} ratios and {Steiner} subratio in the space of compacta in the {Euclidean} plane with {Hausdorff} distance},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {157--165},
     year = {2013},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a12/}
}
TY  - JOUR
AU  - Z. N. Ovsyannikov
TI  - The Steiner and Gromov–Steiner ratios and Steiner subratio in the space of compacta in the Euclidean plane with Hausdorff distance
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 157
EP  - 165
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a12/
LA  - ru
ID  - FPM_2013_18_2_a12
ER  - 
%0 Journal Article
%A Z. N. Ovsyannikov
%T The Steiner and Gromov–Steiner ratios and Steiner subratio in the space of compacta in the Euclidean plane with Hausdorff distance
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 157-165
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a12/
%G ru
%F FPM_2013_18_2_a12
Z. N. Ovsyannikov. The Steiner and Gromov–Steiner ratios and Steiner subratio in the space of compacta in the Euclidean plane with Hausdorff distance. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 157-165. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a12/

[1] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl