An open family of sets that have several minimal fillings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 153-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

Minimal fillings of $n$-point metric spaces were introduced by Ivanov and Tuzhilin. It was thought that “for almost all sets” in some sense such a filling is unique. Here we introduce a counterexample to this hypothesis.
@article{FPM_2013_18_2_a11,
     author = {Z. N. Ovsyannikov},
     title = {An open family of sets that have several minimal fillings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {153--156},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a11/}
}
TY  - JOUR
AU  - Z. N. Ovsyannikov
TI  - An open family of sets that have several minimal fillings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 153
EP  - 156
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a11/
LA  - ru
ID  - FPM_2013_18_2_a11
ER  - 
%0 Journal Article
%A Z. N. Ovsyannikov
%T An open family of sets that have several minimal fillings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 153-156
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a11/
%G ru
%F FPM_2013_18_2_a11
Z. N. Ovsyannikov. An open family of sets that have several minimal fillings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 153-156. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a11/

[1] Erëmin A. Yu., “Formula vesa minimalnogo zapolneniya konechnogo metricheskogo prostranstva”, Mat. sb., 204:9 (2013), 51–72 | DOI | Zbl

[2] Ivanov A. O., Tuzhilin A. A., “Odnomernaya problema Gromova o minimalnom zapolnenii”, Mat. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl