Computation of the longest segment of a~given direction in a~simplex
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 147-152

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a nondegenerate simplex in $\mathbb R^n$ and let $v$ be a nonzero $n$-dimensional vector. We give the computational formulas for the length and endpoints of the longest segment in $S$ parallel to $v$.
@article{FPM_2013_18_2_a10,
     author = {M. V. Nevskii},
     title = {Computation of the longest segment of a~given direction in a~simplex},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--152},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a10/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - Computation of the longest segment of a~given direction in a~simplex
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 147
EP  - 152
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a10/
LA  - ru
ID  - FPM_2013_18_2_a10
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T Computation of the longest segment of a~given direction in a~simplex
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 147-152
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a10/
%G ru
%F FPM_2013_18_2_a10
M. V. Nevskii. Computation of the longest segment of a~given direction in a~simplex. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 2, pp. 147-152. http://geodesic.mathdoc.fr/item/FPM_2013_18_2_a10/