A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 159-170
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$ with nonzero divisible parts. In this paper, we prove that the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementarily equivalent if and only if the groups $A_1$ and $A_2$ are equivalent in second-order logic.
@article{FPM_2013_18_1_a8,
author = {M. A. Roizner},
title = {A criterion of elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--170},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/}
}
TY - JOUR AU - M. A. Roizner TI - A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 159 EP - 170 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/ LA - ru ID - FPM_2013_18_1_a8 ER -
M. A. Roizner. A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 159-170. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/