A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 159-170

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$ with nonzero divisible parts. In this paper, we prove that the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementarily equivalent if and only if the groups $A_1$ and $A_2$ are equivalent in second-order logic.
@article{FPM_2013_18_1_a8,
     author = {M. A. Roizner},
     title = {A criterion of elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--170},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/}
}
TY  - JOUR
AU  - M. A. Roizner
TI  - A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 159
EP  - 170
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/
LA  - ru
ID  - FPM_2013_18_1_a8
ER  - 
%0 Journal Article
%A M. A. Roizner
%T A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 159-170
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/
%G ru
%F FPM_2013_18_1_a8
M. A. Roizner. A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 159-170. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/