A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 159-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$ with nonzero divisible parts. In this paper, we prove that the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementarily equivalent if and only if the groups $A_1$ and $A_2$ are equivalent in second-order logic.
@article{FPM_2013_18_1_a8,
     author = {M. A. Roizner},
     title = {A criterion of elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--170},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/}
}
TY  - JOUR
AU  - M. A. Roizner
TI  - A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 159
EP  - 170
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/
LA  - ru
ID  - FPM_2013_18_1_a8
ER  - 
%0 Journal Article
%A M. A. Roizner
%T A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 159-170
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/
%G ru
%F FPM_2013_18_1_a8
M. A. Roizner. A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 159-170. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a8/

[1] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad koltsami i telami”, Uspekhi mat. nauk, 53:2 (1998), 137–138 | DOI | MR | Zbl

[2] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad polyami”, Fundament. i prikl. mat., 4:4 (1998), 1265–1278 | MR | Zbl

[3] Bunina E. I., “Elementarnaya ekvivalentnost grupp Shevalle”, Uspekhi mat. nauk, 56:1 (2001), 157–158 | DOI | MR | Zbl

[4] Bunina E. I., “Elementarnaya ekvivalentnost grupp Shevalle nad lokalnymi koltsami”, Mat. sb., 201:3 (2010), 3–20 | DOI | MR | Zbl

[5] Bunina E. I., Mikhalëv A. V., “Elementarnaya ekvivalentnost kolets endomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. mat., 10:2 (2004), 135–224 | MR | Zbl

[6] Bunina E. I., Mikhalëv A. V., “Elementarnye svoistva kategorii modulei nad koltsom, kolets endomorfizmov i grupp avtomorfizmov modulei”, Fundament. i prikl. mat., 10:2 (2004), 51–134 | MR | Zbl

[7] Bunina E. I., Roizner M. A., “Elementarnaya ekvivalentnost grupp avtomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. mat., 15:7 (2009), 81–112 | MR

[8] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[9] Kulikov L. Ya., “Obobschënnye primarnye gruppy. I”, Tr. MMO, 1, 1952, 247–326 ; “II”, Тр. ММО, 2, 1953, 85–167 | MR | Zbl | MR

[10] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, 1961, 110–132 | Zbl

[11] Roizner M. A., “Kriterii elementarnoi ekvivalentnosti grupp avtomorfizmov redutsirovannykh abelevykh $p$-grupp”, Fundament. i prikl. mat., 17:5 (2011/2012), 157–163 | MR

[12] Fuks L., Beskonechnye abelevy gruppy, v. 1, 2, Mir, M., 1974

[13] Baer R., “Automorphism rings of primary Abelian operator groups”, Ann. Math., 44 (1943), 192–227 | DOI | MR | Zbl

[14] Beidar C. I., Mikhalev A. V., “On Malcev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131 (1992), 29–35 | DOI | MR | Zbl

[15] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1954, 1969 | MR | Zbl

[16] Leptin H., “Abelsche $p$-Gruppen und ihre Automorphismengruppen”, Math. Z., 73 (1960), 235–253 | DOI | MR | Zbl

[17] Liebert W., “Isomorphic automorphism groups of primary Abelian groups. II”, Contemp. Math., 87 (1989), 51–59 | DOI | MR | Zbl

[18] Roizner M. A., Elementary equivalence of the automorphism groups of reduced Abelian $p$-groups, 2007, arXiv: 1207.1951v1[math.GR]

[19] Shelah S., “Interpreting set theory in the endomorphism semi-group of a free algebra or in the category”, Ann. Sci. Univ. Clermont Math., 13 (1976), 1–29 | MR | Zbl

[20] Tolstykh V., “Elementary equivalence of infinite-dimensional classical groups”, Ann. Pure Appl. Logic, 105 (2000), 103–156 | DOI | MR | Zbl