Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 57-62

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that every element of the linear group $\mathrm{GL}_{14} (R)$ normalizing the Chevalley group of type $G_2$ over a commutative local ring $R$ without $1/2$ belongs to this group up to some multiplier. This allows us to improve our classification of automorphisms of these Chevalley groups showing that an automorphism-conjugation can be replaced by an inner automorphism. Therefore, it is proved that every automorphism of a Chevalley group of type $G_2$ over a local ring without $1/2$ is a composition of a ring and an inner automorphisms.
@article{FPM_2013_18_1_a4,
     author = {E. I. Bunina and P. A. Veryovkin},
     title = {Normalizers of {Chevalley} groups of type $G_2$ over local rings without~$1/2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - P. A. Veryovkin
TI  - Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 57
EP  - 62
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/
LA  - ru
ID  - FPM_2013_18_1_a4
ER  - 
%0 Journal Article
%A E. I. Bunina
%A P. A. Veryovkin
%T Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 57-62
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/
%G ru
%F FPM_2013_18_1_a4
E. I. Bunina; P. A. Veryovkin. Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/