Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 57-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that every element of the linear group $\mathrm{GL}_{14} (R)$ normalizing the Chevalley group of type $G_2$ over a commutative local ring $R$ without $1/2$ belongs to this group up to some multiplier. This allows us to improve our classification of automorphisms of these Chevalley groups showing that an automorphism-conjugation can be replaced by an inner automorphism. Therefore, it is proved that every automorphism of a Chevalley group of type $G_2$ over a local ring without $1/2$ is a composition of a ring and an inner automorphisms.
@article{FPM_2013_18_1_a4,
     author = {E. I. Bunina and P. A. Veryovkin},
     title = {Normalizers of {Chevalley} groups of type $G_2$ over local rings without~$1/2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--62},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - P. A. Veryovkin
TI  - Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 57
EP  - 62
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/
LA  - ru
ID  - FPM_2013_18_1_a4
ER  - 
%0 Journal Article
%A E. I. Bunina
%A P. A. Veryovkin
%T Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 57-62
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/
%G ru
%F FPM_2013_18_1_a4
E. I. Bunina; P. A. Veryovkin. Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/

[1] Bunina E. I., “Avtomorfizmy grupp Shevalle tipov $A_l$, $D_l$, $E_l$ nad lokalnymi koltsami s neobratimoi dvoikoi”, Fundament. i prikl. mat., 15:7 (2009), 47–80 | MR

[2] Bunina E. I., “Avtomorfizmy i normalizatory grupp Shevalle tipov $A_l$, $D_l$, $E_l$ nad lokalnymi koltsami s $1/2$”, Fundament. i prikl. mat., 15:2 (2009), 35–59 | MR

[3] Bunina E. I., Verëvkin P. A., “Avtomorfizmy grupp Shevalle tipa $G_2$ nad lokalnymi koltsami s neobratimoi dvoikoi”, Fundament. i prikl. mat., 17:7 (2011/2012), 49–66

[4] Abe E., “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[5] Abe E., “Automorphisms of Chevalley groups over commutative rings”, Algebra Anal., 5:2 (1993), 74–90 | MR | Zbl

[6] Borel A., Tits J., “Homomorphismes “abstraits” de groupes algébriques simples”, Ann. Math., 73 (1973), 499–571 | DOI | MR

[7] Bunina E. I., “Automorphisms of Chevalley groups of type $F_4$ over local rings with $1/2$”, J. Algebra, 323 (2010), 2270–2289 ; arXiv: 0907.5592 | DOI | MR | Zbl

[8] Bunina E. I., “Automorphisms of Chevalley groups of different types over commutative rings”, J. Algebra, 355:1 (2012), 154–170 | DOI | MR | Zbl

[9] Carter R. W., Chen Yu., “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155 (1993), 44–94 | DOI | MR | Zbl

[10] Chen Yu., “Isomorphic Chevalley groups over integral domains”, Rend. Sem. Mat. Univ. Padova, 92 (1994), 231–237 | MR | Zbl

[11] Chen Yu., “Automorphisms of simple Chevalley groups over $\mathbb Q$-algebras”, Tôhoku Math. J., 348 (1995), 81–97 | DOI | MR

[12] Chen Yu., “On representations of elementary subgroups of Chevalley groups over algebras”, Proc. Amer. Math. Soc., 123:8 (1995), 2357–2361 | DOI | MR | Zbl

[13] Chen Yu., “Isomorphisms of adjoint Chevalley groups over integral domains”, Trans. Amer. Math. Soc., 348:2 (1996), 1–19 | DOI | MR

[14] Chen Yu., “Isomorphisms of Chevalley groups over algebras”, J. Algebra, 226 (2000), 719–741 | DOI | MR | Zbl

[15] Humphreys J. F., “On the automorphisms of infinite Chevalley groups”, Can. J. Math., 21 (1969), 908–911 | DOI | MR | Zbl

[16] Klyachko A. A., Automorphisms and isomorphisms of Chevalley groups and algebras, 2007, arXiv: 0708.2256v3 | MR

[17] Steinberg R., “Automorphisms of finite linear groups”, Can. J. Math., 121 (1960), 606–615 | DOI | MR

[18] Steinberg R., Lectures on Chevalley Groups, Yale Univ., 1967 | MR