Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 57-62
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that every element of the linear group $\mathrm{GL}_{14} (R)$ normalizing the Chevalley group of type $G_2$ over a commutative local ring $R$ without $1/2$ belongs to this group up to some multiplier. This allows us to improve our classification of automorphisms of these Chevalley groups showing that an automorphism-conjugation can be replaced by an inner automorphism. Therefore, it is proved that every automorphism of a Chevalley group of type $G_2$ over a local ring without $1/2$ is a composition of a ring and an inner automorphisms.
@article{FPM_2013_18_1_a4,
author = {E. I. Bunina and P. A. Veryovkin},
title = {Normalizers of {Chevalley} groups of type $G_2$ over local rings without~$1/2$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {57--62},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/}
}
TY - JOUR AU - E. I. Bunina AU - P. A. Veryovkin TI - Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2013 SP - 57 EP - 62 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/ LA - ru ID - FPM_2013_18_1_a4 ER -
E. I. Bunina; P. A. Veryovkin. Normalizers of Chevalley groups of type $G_2$ over local rings without~$1/2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a4/