Stable groups over associative rings with~$1/2$. A~description of isomorphisms of the stable linear groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the stable linear groups over associative ring with $1/2$ and isomorphisms between them. We describe an action of the isomorphisms on the stable elementary subgroup.
@article{FPM_2013_18_1_a0,
     author = {A. S. Atkarskaya},
     title = {Stable groups over associative rings with~$1/2$. {A~description} of isomorphisms of the stable linear groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a0/}
}
TY  - JOUR
AU  - A. S. Atkarskaya
TI  - Stable groups over associative rings with~$1/2$. A~description of isomorphisms of the stable linear groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2013
SP  - 3
EP  - 20
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a0/
LA  - ru
ID  - FPM_2013_18_1_a0
ER  - 
%0 Journal Article
%A A. S. Atkarskaya
%T Stable groups over associative rings with~$1/2$. A~description of isomorphisms of the stable linear groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2013
%P 3-20
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a0/
%G ru
%F FPM_2013_18_1_a0
A. S. Atkarskaya. Stable groups over associative rings with~$1/2$. A~description of isomorphisms of the stable linear groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 18 (2013) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/FPM_2013_18_1_a0/

[1] Golubchik I. Z., Lineinye gruppy nad assotsiativnymi koltsami, Dis. $\dots$ dokt. fiz.-mat. nauk, Ufa, 1997

[2] Golubchik I. Z., Mikhalëv A. V., “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1983, no. 3, 61–72 | MR | Zbl

[3] Zelmanov E. I., “Izomorfizmy lineinykh grupp nad assotsiativnym koltsom”, Sib. mat. zhurn., 26:4 (1985), 49–67 | MR | Zbl

[4] Abrams G., “Infinite matrix types which determine Morita equivalence”, Arch. Math., 46:1 (1986), 33–37 | DOI | MR | Zbl

[5] Dieudonne J., “On the automorphisms of the classical groups”, Mem. Am. Math. Soc., 2 (1951), 1–95 | DOI | MR

[6] Li Fuan, “Infinite Steinberg groups”, Acta Math. Sinica, 10:2 (1994), 149–157 | DOI | MR | Zbl

[7] Hahn A. J., O'Meara O. T., The Classical Groups and K-Theory, Springer, Berlin, 1989 | MR | Zbl

[8] Rickart C. E., “Isomorphic group of linear transformations. I”, Am. J. Math., 72 (1950), 451–464 | DOI | MR | Zbl

[9] Schreier O., van der Waerden B. L., “Die Automorphismen der projektiven Gruppen”, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 303–322 | DOI | MR | Zbl

[10] Shi-Jian Yan, “Linear groups over a ring”, Chinese Math., 7:2 (1965), 163–179 | MR