Absolute nil-ideals of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 63-76

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that in an Abelian group $G$ that contains no nonzero divisible torsion-free subgroups the intersection of upper nil-radicals of all the rings on $G$ is $\bigcap_ppT(G)$, where $T(G)$ is the torsion part of $G$. In this work, we define a pure fully invariant subgroup $G^*\supseteq T(G)$ of an arbitrary Abelian mixed group $G$ and prove that if $G$ contains no nonzero torsion-free subgroups, then the subgroup $\bigcap_ppG^*$ is a nil-ideal in any ring on $G$, and the first Ulm subgroup $G^1$ is its nilpotent ideal.
@article{FPM_2012_17_8_a8,
     author = {E. I. Kompantseva},
     title = {Absolute nil-ideals of {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {63--76},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a8/}
}
TY  - JOUR
AU  - E. I. Kompantseva
TI  - Absolute nil-ideals of Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 63
EP  - 76
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a8/
LA  - ru
ID  - FPM_2012_17_8_a8
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%T Absolute nil-ideals of Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 63-76
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a8/
%G ru
%F FPM_2012_17_8_a8
E. I. Kompantseva. Absolute nil-ideals of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 63-76. http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a8/