Determinateness of torsion-free Abelian groups by their holomorphs and almost holomorphic isomorphism
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 35-46
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study holomorphically isomorphic Abelian groups, i.e., Abelian groups with isomorphic holomorphs. We also study a generalization of the concept of holomorphic isomorphism, namely, almost holomorphic isomorphism, which is deeply connected with normal Abelian subgroups of holomorphs of Abelian groups. Torsion-free Abelian groups that are determined by their holomorphs are highlighted from different classes. In particular, it has been found that any homogeneous separable group can be determined by its holomorph in the class of all Abelian groups.
@article{FPM_2012_17_8_a5,
author = {S. Ya. Grinshpon and I. E. Grinshpon},
title = {Determinateness of torsion-free {Abelian} groups by their holomorphs and almost holomorphic isomorphism},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {35--46},
publisher = {mathdoc},
volume = {17},
number = {8},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a5/}
}
TY - JOUR AU - S. Ya. Grinshpon AU - I. E. Grinshpon TI - Determinateness of torsion-free Abelian groups by their holomorphs and almost holomorphic isomorphism JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 35 EP - 46 VL - 17 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a5/ LA - ru ID - FPM_2012_17_8_a5 ER -
%0 Journal Article %A S. Ya. Grinshpon %A I. E. Grinshpon %T Determinateness of torsion-free Abelian groups by their holomorphs and almost holomorphic isomorphism %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 35-46 %V 17 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a5/ %G ru %F FPM_2012_17_8_a5
S. Ya. Grinshpon; I. E. Grinshpon. Determinateness of torsion-free Abelian groups by their holomorphs and almost holomorphic isomorphism. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 35-46. http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a5/