Torsion Abelian RAI-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 109-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of an Abelian group $G$ is called its absolute ideal if $A$ is an ideal of any ring on $G$. An Abelian group is called an RAI-group if there exists a ring on it in which every ideal is absolute. The problem of describing RAI-groups was formulated by L. Fuchs (Problem 93). In this paper, absolute ideals of torsion Abelian groups and torsion Abelian RAI-groups are described.
@article{FPM_2012_17_8_a12,
     author = {Pham Thi Thu Thuy},
     title = {Torsion {Abelian} {RAI-groups}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {109--138},
     publisher = {mathdoc},
     volume = {17},
     number = {8},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a12/}
}
TY  - JOUR
AU  - Pham Thi Thu Thuy
TI  - Torsion Abelian RAI-groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 109
EP  - 138
VL  - 17
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a12/
LA  - ru
ID  - FPM_2012_17_8_a12
ER  - 
%0 Journal Article
%A Pham Thi Thu Thuy
%T Torsion Abelian RAI-groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 109-138
%V 17
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a12/
%G ru
%F FPM_2012_17_8_a12
Pham Thi Thu Thuy. Torsion Abelian RAI-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 109-138. http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a12/

[1] Kompantseva E. I., “Koltsa bez krucheniya”, Fundament. i prikl. mat., 15:8 (2009), 95–143 | MR

[2] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1977

[3] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[4] Chekhlov A. R., “Ob abelevykh gruppakh, vse podgruppy kotorykh yavlyayutsya idealami”, Vestn. Tomsk. gos. un-ta. Mat. i mekh., 2009, no. 3, 64–67

[5] Fried E., “On the subgroups of Abelian groups that are ideals in every ring”, Proc. Colloq. Abelian Groups, Budapest, 1964, 51–55 | MR | Zbl