Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_8_a1, author = {A. A. Agafonov and A. M. Sebeldin}, title = {An {Abelian} group as a~direct summand of the multiplication group}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {9--12}, publisher = {mathdoc}, volume = {17}, number = {8}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a1/} }
TY - JOUR AU - A. A. Agafonov AU - A. M. Sebeldin TI - An Abelian group as a~direct summand of the multiplication group JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 9 EP - 12 VL - 17 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a1/ LA - ru ID - FPM_2012_17_8_a1 ER -
A. A. Agafonov; A. M. Sebeldin. An Abelian group as a~direct summand of the multiplication group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 8, pp. 9-12. http://geodesic.mathdoc.fr/item/FPM_2012_17_8_a1/
[1] Agafonov A. A., Sebeldin A. M., “Opredelyaemost abelevykh grupp gruppoi umnozhenii”, Materialy Vserossiiskogo simp. “Abelevy gruppy”, Biisk, 2010, 13–16
[2] Sebeldin A. M., “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vyssh. uchebn. zaved. Matematika, 1973, no. 7, 77–84 | MR | Zbl
[3] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[4] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977
[5] Sebeldin A. M., “Isomorphisme naturel des groupes des homomorphismes des groupes abéliens”, Ann. de L'IPGANC, Conakry. Sér. A, 8 (1982), 155–158