New properties of the Lie algebra variety $\mathbf N_2\mathbf A$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 165-173
We continue to consider the properties of the almost polynomial growth variety of Lie algebras over a field of characteristic zero defined by the identity $(x_1x_2)(x_3x_4)(x_5x_6)\equiv0$. Here we have constructed the bases of its multilinear parts and proved the formulas for the colength and codimension sequences of this variety.
@article{FPM_2012_17_7_a8,
author = {S. P. Mishchenko and Y. R. Fyathutdinova},
title = {New properties of the {Lie} algebra variety~$\mathbf N_2\mathbf A$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {165--173},
year = {2012},
volume = {17},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a8/}
}
TY - JOUR AU - S. P. Mishchenko AU - Y. R. Fyathutdinova TI - New properties of the Lie algebra variety $\mathbf N_2\mathbf A$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 165 EP - 173 VL - 17 IS - 7 UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a8/ LA - ru ID - FPM_2012_17_7_a8 ER -
S. P. Mishchenko; Y. R. Fyathutdinova. New properties of the Lie algebra variety $\mathbf N_2\mathbf A$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 165-173. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a8/
[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1980 | MR
[2] Maltsev A. I., “Ob algebrakh s tozhdestvennymi opredelyayuschimi sootnosheniyami”, Mat. sb., 26(68):1 (1950), 19–33 | MR | Zbl
[3] Mischenko S. P., “Mnogoobraziya algebr Li s dvustupenno nilpotentnym kommutantom”, Vestsi AN BSSR. Ser. fiz.-mat. nauk, 1987, no. 6, 39–43
[4] Mischenko S. P., “Rost mnogoobrazii algebr Li”, Uspekhi mat. nauk, 45:6(276) (1990), 25–45 | MR | Zbl
[5] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Math. Surveys Monographs, 122, Amer. Math. Soc., Providence, 2005 | DOI | MR | Zbl