Positive definite functions as an instrument of mathematical analysis
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 67-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the subject in question, the paper describes its connections that are close to the author's interests with branches of functional analysis. The present survey may be suitable as a basis for a special course.
@article{FPM_2012_17_7_a4,
     author = {E. A. Gorin},
     title = {Positive definite functions as an instrument of mathematical analysis},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--95},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/}
}
TY  - JOUR
AU  - E. A. Gorin
TI  - Positive definite functions as an instrument of mathematical analysis
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 67
EP  - 95
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/
LA  - ru
ID  - FPM_2012_17_7_a4
ER  - 
%0 Journal Article
%A E. A. Gorin
%T Positive definite functions as an instrument of mathematical analysis
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 67-95
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/
%G ru
%F FPM_2012_17_7_a4
E. A. Gorin. Positive definite functions as an instrument of mathematical analysis. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 67-95. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/

[1] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya (svodka rezultatov), Mir, M., 1975 | MR

[2] Gorin E. A., “Ob issledovaniyakh G. E. Shilova po teorii kommutativnykh banakhovykh algebr i o nekotorykh napravleniyakh ikh dalneishego razvitiya”, Uspekhi mat. nauk, 33:4 (1978), 169–188 | MR | Zbl

[3] Gorin E. A., “Neravenstva Bernshteina s tochki zreniya teorii operatorov”, Vestn. Kharkov. un-ta. Ser. prikl. mat. i mekh., 205:45 (1980), 77–105 | MR | Zbl

[4] Gorin E. A., “Obobschenie odnoi teoremy Fuglede”, Algebra i analiz, 5:4 (1993), 83–97 | MR | Zbl

[5] Gorin E. A., “Asimptoticheskii zakon raspredeleniya prostykh chisel v kontekste abelevykh polugrupp (iskhodnyi tekst)”, Chebyshëvskii sb., 6:2 (2005), 100–128 | MR | Zbl

[6] Gorin E. A., “Otsenki involyutsii razlozhimykh elementov kompleksnoi banakhovoi algebry”, Funkts. analiz i ego pril., 39:4 (2005), 14–31 | DOI | MR | Zbl

[7] Gorin E. A., “Fragmenty nauchnoi biografii D. A. Raikova: garmonicheskii analiz”, Uspekhi mat. nauk, 61:5 (2006), 157–172 | DOI | MR | Zbl

[8] Gorin E. A., “Funktsiya Mëbiusa na abelevykh polugruppakh”, Funkts. analiz i ego pril., 45:1 (2011), 88–93 | DOI | MR | Zbl

[9] Gorin E. A., Norvidas S., “Universalnye simvoly na lokalno kompaktnykh abelevykh gruppakh”, Funkts. analiz i ego pril., 47:1 (2013), 1–16 | DOI | Zbl

[10] Devenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1971 | MR

[11] Lyubich Yu. I., Matsaev V. I., Feldman G. M., “O predstavleniyakh s otdelimym spektrom”, Funkts. analiz i ego pril., 7:2 (1973), 52–61 | MR | Zbl

[12] Norvidas S. T., “Ob ustoichivosti differentsialnykh operatorov v prostranstvakh tselykh funktsii”, DAN SSSR, 291:3 (1986), 548–551 | MR | Zbl

[13] Norvidas S., “Funktsionalnoe ischislenie ermitovykh elementov i neravenstva Bernshteina”, Funkts. analiz i ego pril., 40:2 (2006), 79–81 | DOI | MR | Zbl

[14] Postnikov A. G., Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR | Zbl

[15] Riman B., Sochineniya, OGIZ, Gostekhizdat, M.–L., 1948

[16] Sëkelfalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[17] Titchmarsh E., Teoriya dzeta-funktsii Rimana, Izd. inostr. lit., M., 1953

[18] Boas R. M. (Jr.), Schaffer A. C., “Variational method in entire functions”, Am. J. Math., 79:4 (1957), 857–884 | DOI | MR | Zbl

[19] Bonsall F. F., Duncan J., Complete Normed Algebras, Springer, Berlin, 1973 | MR | Zbl

[20] Gorin E. A., “Universal symbols on locally compact Abelian groups”, Bull. Polish Acad. Sci., 51:2 (2003), 199–204 | MR | Zbl

[21] Isidro J., Stachò L., Holomorphhic Automorphism Groups in Banach Spaces, An Elementary Introduction, North-Holland, Amsterdam, 1984 | MR | Zbl

[22] Kaup W., “Bounded symmetric domains and generalized operator algebras”, Real Analysis and Functional Analysis Joint Symposium, 2007, 45–56

[23] Rudin W., Fourier Analysis on Groups, Interscience Publishers, New York, 1967 | MR

[24] Upmeier H., Symmetric Banach Manifolds and Jordan $C^*$-Algebras, North-Holland, Amsterdam, 1985 | MR | Zbl