Positive definite functions as an instrument of mathematical analysis
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 67-95
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the subject in question, the paper describes its connections that are close to the author's interests with branches of functional analysis. The present survey may be suitable as a basis for a special course.
@article{FPM_2012_17_7_a4,
     author = {E. A. Gorin},
     title = {Positive definite functions as an instrument of mathematical analysis},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--95},
     year = {2012},
     volume = {17},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/}
}
TY  - JOUR
AU  - E. A. Gorin
TI  - Positive definite functions as an instrument of mathematical analysis
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 67
EP  - 95
VL  - 17
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/
LA  - ru
ID  - FPM_2012_17_7_a4
ER  - 
%0 Journal Article
%A E. A. Gorin
%T Positive definite functions as an instrument of mathematical analysis
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 67-95
%V 17
%N 7
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/
%G ru
%F FPM_2012_17_7_a4
E. A. Gorin. Positive definite functions as an instrument of mathematical analysis. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 67-95. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a4/

[1] Burbaki N., Differentsiruemye i analiticheskie mnogoobraziya (svodka rezultatov), Mir, M., 1975 | MR

[2] Gorin E. A., “Ob issledovaniyakh G. E. Shilova po teorii kommutativnykh banakhovykh algebr i o nekotorykh napravleniyakh ikh dalneishego razvitiya”, Uspekhi mat. nauk, 33:4 (1978), 169–188 | MR | Zbl

[3] Gorin E. A., “Neravenstva Bernshteina s tochki zreniya teorii operatorov”, Vestn. Kharkov. un-ta. Ser. prikl. mat. i mekh., 205:45 (1980), 77–105 | MR | Zbl

[4] Gorin E. A., “Obobschenie odnoi teoremy Fuglede”, Algebra i analiz, 5:4 (1993), 83–97 | MR | Zbl

[5] Gorin E. A., “Asimptoticheskii zakon raspredeleniya prostykh chisel v kontekste abelevykh polugrupp (iskhodnyi tekst)”, Chebyshëvskii sb., 6:2 (2005), 100–128 | MR | Zbl

[6] Gorin E. A., “Otsenki involyutsii razlozhimykh elementov kompleksnoi banakhovoi algebry”, Funkts. analiz i ego pril., 39:4 (2005), 14–31 | DOI | MR | Zbl

[7] Gorin E. A., “Fragmenty nauchnoi biografii D. A. Raikova: garmonicheskii analiz”, Uspekhi mat. nauk, 61:5 (2006), 157–172 | DOI | MR | Zbl

[8] Gorin E. A., “Funktsiya Mëbiusa na abelevykh polugruppakh”, Funkts. analiz i ego pril., 45:1 (2011), 88–93 | DOI | MR | Zbl

[9] Gorin E. A., Norvidas S., “Universalnye simvoly na lokalno kompaktnykh abelevykh gruppakh”, Funkts. analiz i ego pril., 47:1 (2013), 1–16 | DOI | Zbl

[10] Devenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1971 | MR

[11] Lyubich Yu. I., Matsaev V. I., Feldman G. M., “O predstavleniyakh s otdelimym spektrom”, Funkts. analiz i ego pril., 7:2 (1973), 52–61 | MR | Zbl

[12] Norvidas S. T., “Ob ustoichivosti differentsialnykh operatorov v prostranstvakh tselykh funktsii”, DAN SSSR, 291:3 (1986), 548–551 | MR | Zbl

[13] Norvidas S., “Funktsionalnoe ischislenie ermitovykh elementov i neravenstva Bernshteina”, Funkts. analiz i ego pril., 40:2 (2006), 79–81 | DOI | MR | Zbl

[14] Postnikov A. G., Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR | Zbl

[15] Riman B., Sochineniya, OGIZ, Gostekhizdat, M.–L., 1948

[16] Sëkelfalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[17] Titchmarsh E., Teoriya dzeta-funktsii Rimana, Izd. inostr. lit., M., 1953

[18] Boas R. M. (Jr.), Schaffer A. C., “Variational method in entire functions”, Am. J. Math., 79:4 (1957), 857–884 | DOI | MR | Zbl

[19] Bonsall F. F., Duncan J., Complete Normed Algebras, Springer, Berlin, 1973 | MR | Zbl

[20] Gorin E. A., “Universal symbols on locally compact Abelian groups”, Bull. Polish Acad. Sci., 51:2 (2003), 199–204 | MR | Zbl

[21] Isidro J., Stachò L., Holomorphhic Automorphism Groups in Banach Spaces, An Elementary Introduction, North-Holland, Amsterdam, 1984 | MR | Zbl

[22] Kaup W., “Bounded symmetric domains and generalized operator algebras”, Real Analysis and Functional Analysis Joint Symposium, 2007, 45–56

[23] Rudin W., Fourier Analysis on Groups, Interscience Publishers, New York, 1967 | MR

[24] Upmeier H., Symmetric Banach Manifolds and Jordan $C^*$-Algebras, North-Holland, Amsterdam, 1985 | MR | Zbl