Automorphisms of Chevalley groups of type $G_2$ over local rings without~$1/2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 49-66
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that every automorphism of a Chevalley group of type $G_2$ over a commutative local ring without $1/2$ is the composition of a ring automorphism and a conjugation by some matrix.
@article{FPM_2012_17_7_a3,
author = {E. I. Bunina and P. A. Veryovkin},
title = {Automorphisms of {Chevalley} groups of type $G_2$ over local rings without~$1/2$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {49--66},
publisher = {mathdoc},
volume = {17},
number = {7},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a3/}
}
TY - JOUR AU - E. I. Bunina AU - P. A. Veryovkin TI - Automorphisms of Chevalley groups of type $G_2$ over local rings without~$1/2$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 49 EP - 66 VL - 17 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a3/ LA - ru ID - FPM_2012_17_7_a3 ER -
E. I. Bunina; P. A. Veryovkin. Automorphisms of Chevalley groups of type $G_2$ over local rings without~$1/2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 49-66. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a3/