Automorphisms of Chevalley groups of type $G_2$ over local rings without~$1/2$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 49-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that every automorphism of a Chevalley group of type $G_2$ over a commutative local ring without $1/2$ is the composition of a ring automorphism and a conjugation by some matrix.
@article{FPM_2012_17_7_a3,
     author = {E. I. Bunina and P. A. Veryovkin},
     title = {Automorphisms of {Chevalley} groups of type $G_2$ over local rings without~$1/2$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {49--66},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a3/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - P. A. Veryovkin
TI  - Automorphisms of Chevalley groups of type $G_2$ over local rings without~$1/2$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 49
EP  - 66
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a3/
LA  - ru
ID  - FPM_2012_17_7_a3
ER  - 
%0 Journal Article
%A E. I. Bunina
%A P. A. Veryovkin
%T Automorphisms of Chevalley groups of type $G_2$ over local rings without~$1/2$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 49-66
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a3/
%G ru
%F FPM_2012_17_7_a3
E. I. Bunina; P. A. Veryovkin. Automorphisms of Chevalley groups of type $G_2$ over local rings without~$1/2$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 7, pp. 49-66. http://geodesic.mathdoc.fr/item/FPM_2012_17_7_a3/