On the coincidence of the factor and Gondran--Minoux rank functions of matrices over a~semiring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 223-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the rank functions of matrices over semiring, functions that generalize the classical notion of the rank of a matrix over a field. We study semirings over which the factor and Gondran–Minoux ranks of any matrix coincide. It is shown that every semiring satisfying that condition is a subsemiring of a field. We provide an example of an integral domain over which the factor and Gondran–Minoux ranks are different.
@article{FPM_2012_17_6_a6,
     author = {Ya. N. Shitov},
     title = {On the coincidence of the factor and {Gondran--Minoux} rank functions of matrices over a~semiring},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {223--232},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a6/}
}
TY  - JOUR
AU  - Ya. N. Shitov
TI  - On the coincidence of the factor and Gondran--Minoux rank functions of matrices over a~semiring
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 223
EP  - 232
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a6/
LA  - ru
ID  - FPM_2012_17_6_a6
ER  - 
%0 Journal Article
%A Ya. N. Shitov
%T On the coincidence of the factor and Gondran--Minoux rank functions of matrices over a~semiring
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 223-232
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a6/
%G ru
%F FPM_2012_17_6_a6
Ya. N. Shitov. On the coincidence of the factor and Gondran--Minoux rank functions of matrices over a~semiring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 223-232. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a6/

[1] Shitov Ya., “Minimalnyi primer matritsy, razlichayuschei GM- i d-rangi v maks-algebrakh”, Fundament. i prikl. mat., 14:4 (2008), 231–268 | MR

[2] Akian M., Gaubert S., Guterman A., “Linear independence over tropical semirings and beyond”, Tropical and Idempotent Mathematics, Int. Workshop TROPICAL-07 (Moscow, Russia, August 25–30, 2007), Contemp. Math., 495, ed. G. L. Litvinov, Amer. Math. Soc., Providence, 2009, 1–38 | DOI | MR | Zbl

[3] Akian M., Gaubert S., Guterman A., “Tropical polyhedra are equivalent to mean payoff games”, Int. J. Algebra Comput., 22:1 (2012), 1250001 | DOI | MR | Zbl

[4] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P., Synchronization and Linearity, Wiley, 1992 | MR | Zbl

[5] Barvinok A., Johnson D. S., Woeginger G. J., “The maximum traveling salesman problem under polyhedral norms”, Integer Programming and Combinatorial Optimization, Lect. Notes Comput. Sci., 1412, Springer, Berlin, 1998, 195–201 | DOI | MR | Zbl

[6] Beasley L. B., Guterman A. E., “Rank inequalities over semirings”, J. Korean Math. Soc., 42:2 (2005), 223–241 | DOI | MR | Zbl

[7] Beasley L. B., Pullman N. J., “Boolean-rank-preserving operators and Boolean-rank-1 spaces”, Linear Algebra Appl., 59 (1984), 55–77 | DOI | MR | Zbl

[8] Beasley L. B., Pullman N. J., “Semiring rank versus column rank”, Linear Algebra Appl., 101 (1988), 33–48 | DOI | MR | Zbl

[9] Develin M., Santos F., Sturmfels B., “On the rank of a tropical matrix”, Combinatorial and computational geometry, MSRI Publ., 52, eds. E. Goodman, J. Pach, E. Welzl, Cambridge Univ. Press, Cambridge, 2005, 213–242 | MR | Zbl

[10] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR

[11] Gondran M., Minoux M., Graphs, Dioids and Semirings: New Models and Algorithms, Springer Science $+$ Business Media, 2008 | MR | Zbl