The BMV-conjecture over quaternions and octonions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 185-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates generalizations of the BMV-conjecture for quaternionic and octonionic matrices. For quaternions the correctness of the formulation is shown as well as its equivalence to the original conjecture for complex matrices. General properties of octonions and Hermitian matrices over them are examined for the BMV-conjecture formulation over octonions.
@article{FPM_2012_17_6_a5,
     author = {A. S. Smirnov},
     title = {The {BMV-conjecture} over quaternions and octonions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--222},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a5/}
}
TY  - JOUR
AU  - A. S. Smirnov
TI  - The BMV-conjecture over quaternions and octonions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 185
EP  - 222
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a5/
LA  - ru
ID  - FPM_2012_17_6_a5
ER  - 
%0 Journal Article
%A A. S. Smirnov
%T The BMV-conjecture over quaternions and octonions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 185-222
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a5/
%G ru
%F FPM_2012_17_6_a5
A. S. Smirnov. The BMV-conjecture over quaternions and octonions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 6, pp. 185-222. http://geodesic.mathdoc.fr/item/FPM_2012_17_6_a5/

[1] Bessis D., Moussa P., Villani M., “Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics”, J. Math. Phys., 16 (1975), 2318–2325 | DOI | MR | Zbl

[2] Burgdorf S., “Sums of Hermitian squares as an approach to the BMV conjecture”, Linear and Multilinear Algebra, 59:1 (2011), 1–9 | DOI | MR | Zbl

[3] Fannes M., Petz D., “On the function $e^{H+itK}$”, Int. J. Math. Math. Sci., 29 (2001), 389–394 | DOI | MR

[4] Fannes M., Petz D., “Perturbation of Wigner matrices and a conjecture”, Proc. Amer. Math. Soc., 131 (2003), 1981–1988 | DOI | MR | Zbl

[5] Hägele D., “Proof of the case $p\leq7$ of the Lieb–Seiringer formulation of the Bessis–Moussa–Villani conjecture”, J. Stat. Phys., 127:6 (2007), 1167–1171 | DOI | MR | Zbl

[6] Hillar C. J., “Advances on the Bessis–Moussa–Villani trace conjecture”, Linear Algebra Appl., 426:1 (2007), 130–142 | DOI | MR | Zbl

[7] Hillar C. J., Johnson C. R., “Eigenvalues of words in two positive definite letters”, SIAM J. Matrix Anal. Appl., 23:4 (2002), 916–928 | DOI | MR | Zbl

[8] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, New York, 1985 | MR | Zbl

[9] Klep I., Schweighofer M., “Sums of Hermitian squares and the BMV conjecture”, J. Stat. Phys., 133 (2008), 739–760 | DOI | MR | Zbl

[10] Lieb E. H., Seiringer R., “Equivalent forms of the Bessis–Moussa–Villani conjecture”, J. Stat. Phys., 115 (2004), 185–190 | DOI | MR | Zbl

[11] Ward J. P., Quaternions and Cayley Numbers: Algebra and Applications, Kluwer Academic, Boston, 1997 | MR

[12] Zhang F., “Quaternions and matrices of quaternions”, Linear Algebra Appl., 251 (1997), 21–57 | DOI | MR | Zbl