A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 157-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider reduced Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$. In this paper, we prove that the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementary equivalent if and only if the groups $A_1$ and $A_2$ are equivalent in second-order logic bounded by the cardinalities of the basic subgroups of $A_1$ and $A_2$.
@article{FPM_2012_17_5_a9,
     author = {M. A. Roizner},
     title = {A criterion of elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {157--163},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a9/}
}
TY  - JOUR
AU  - M. A. Roizner
TI  - A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 157
EP  - 163
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a9/
LA  - ru
ID  - FPM_2012_17_5_a9
ER  - 
%0 Journal Article
%A M. A. Roizner
%T A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 157-163
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a9/
%G ru
%F FPM_2012_17_5_a9
M. A. Roizner. A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 157-163. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a9/

[1] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad koltsami i telami”, Uspekhi mat. nauk, 53:2 (1998), 137–138 | DOI | MR | Zbl

[2] Bunina E. I., “Elementarnaya ekvivalentnost unitarnykh lineinykh grupp nad polyami”, Fundament. i prikl. mat., 4:4 (1998), 1265–1278 | MR | Zbl

[3] Bunina E. I., “Elementarnaya ekvivalentnost grupp Shevalle”, Uspekhi mat. nauk, 56:1 (2001), 157–158 | DOI | MR | Zbl

[4] Bunina E. I., Mikhalëv A. V., “Elementarnye svoistva kategorii modulei nad koltsom, kolets endomorfizmov i grupp avtomorfizmov modulei”, Fundament. i prikl. mat., 10:2 (2004), 51–134 | MR | Zbl

[5] Bunina E. I., Mikhalëv A. V., “Elementarnaya ekvivalentnost kolets endomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. mat., 10:2 (2004), 135–224 | MR | Zbl

[6] Bunina E. I., Roizner M. A., “Elementarnaya ekvivalentnost grupp avtomorfizmov abelevykh $p$-grupp”, Fundament. i prikl. mat., 15:7 (2009), 81–112 | MR

[7] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[8] Kulikov L. Ya., “Obobschënnye primarnye gruppy. I”, Tr. MMO, 1, 1952, 247–326 ; “II”, Тр. ММО, 2, 1953, 85–167 | MR | Zbl | MR

[9] Maltsev A. I., “Ob elementarnykh svoistvakh lineinykh grupp”, Problemy matematiki i mekhaniki, Novosibirsk, 1961, 110–132 | Zbl

[10] Fuks L., Beskonechnye abelevy gruppy, v. 1, 2, Mir, M., 1974

[11] Beidar C. I., Mikhalev A. V., “On Malcev's theorem on elementary equivalence of linear groups”, Contemp. Math., 131 (1992), 29–35 | DOI | MR | Zbl

[12] Kaloujnine L., “Sur les groupes abéliens primaires sans éléments de hauteur infinie”, C. R. Acad. Sci. Paris, 225 (1947), 713–715 | MR

[13] Roizner M. A., Elementary equivalence of the automorphism groups of reduced Abelian $p$-groups, , 2007 1207.1951v1[math.GR] | MR

[14] Szele T., “On the basic subgroups of Abelian $p$-groups”, Acta Math. Acad. Sci. Hungar., 5 (1954), 129–141 ; Math. Soc., 28 (1953), 247–250 | DOI | MR | Zbl | MR | Zbl

[15] Tolstykh V., “Elementary equivalence of infinite-dimensional classical groups”, Ann. Pure Appl. Logic, 105 (2000), 103–156 | DOI | MR | Zbl