A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 157-163
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider reduced Abelian $p$-groups ($p\geq3$) $A_1$ and $A_2$. In this paper, we prove that the automorphism groups $\operatorname{Aut}A_1$ and $\operatorname{Aut}A_2$ are elementary equivalent if and only if the groups $A_1$ and $A_2$ are equivalent in second-order logic bounded by the cardinalities of the basic subgroups of $A_1$ and $A_2$.
@article{FPM_2012_17_5_a9,
author = {M. A. Roizner},
title = {A criterion of elementary equivalence of automorphism groups of reduced {Abelian} $p$-groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {157--163},
publisher = {mathdoc},
volume = {17},
number = {5},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a9/}
}
TY - JOUR AU - M. A. Roizner TI - A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 157 EP - 163 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a9/ LA - ru ID - FPM_2012_17_5_a9 ER -
M. A. Roizner. A criterion of elementary equivalence of automorphism groups of reduced Abelian $p$-groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 157-163. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a9/