Determinant theory for lattice matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 87-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The determinant theory for matrices over a pseudo-complemented distributive lattice is presented. Previous results on this topic are special cases of the theorems proved in this paper.
@article{FPM_2012_17_5_a5,
     author = {E. E. Marenich},
     title = {Determinant theory for lattice matrices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {87--101},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a5/}
}
TY  - JOUR
AU  - E. E. Marenich
TI  - Determinant theory for lattice matrices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 87
EP  - 101
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a5/
LA  - ru
ID  - FPM_2012_17_5_a5
ER  - 
%0 Journal Article
%A E. E. Marenich
%T Determinant theory for lattice matrices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 87-101
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a5/
%G ru
%F FPM_2012_17_5_a5
E. E. Marenich. Determinant theory for lattice matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 87-101. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a5/

[1] Aranovich B. I., “Ispolzovanie matrichnykh metodov v problemakh analiza releino-kontaktnykh setei”, Avtomatika i telemekhanika, 1949, no. 10, 437–451

[2] Poplavskii V. B., “Ob'ëmy i opredeliteli stepenei tranzitivnykh i refleksivnykh bulevykh otnoshenii na konechnom mnozhestve”, Izv. Tulsk. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 10:1 (2004), 134–141 | MR

[3] Poplavskii V. B., “Opredeliteli stepenei bulevykh matrits”, Chebyshëvskii sb., 5:3(11) (2004), 98–111 | MR | Zbl

[4] Poplavskii V. B., “Orientirovannye opredeliteli proizvedeniya bulevykh matrits”, Matematika. Mekhanika, 6, Izd-vo Saratovsk. un-ta, 2004, 111–114

[5] Poplavskii V. B., “O razlozhenii opredelitelei bulevykh matrits”, Fundament. i prikl. mat., 13:4 (2007), 199–223 | MR | Zbl

[6] Poplavskii V. B., “O rangakh, klassakh Grina i teorii opredelitelei bulevykh matrits”, Diskret. mat., 20:4 (2008), 42–60 | DOI | MR | Zbl

[7] Sokolov O. B., “Primenenie bulevykh opredelitelei k analizu logicheskikh mnogopolyusnikov”, Uchënye zapiski Kazansk. gos. un-ta, 123, no. 6, 1963, 155–164

[8] De Caen D., Gregory D. A., “Primes in the semigroup of Boolean matrices”, Linear Algebra Appl., 37 (1981), 119–134 | DOI | MR | Zbl

[9] Chechlarova K., “Powers of matrices over distributive lattices. A review”, Fuzzy Sets Systems, 138 (2003), 627–641 | DOI | MR

[10] Chesley D. S., Bevis J. H., “Determinants for matrices over lattices”, Proc. Royal Soc. Edinburgh, 68 (1969), 138–144 | MR | Zbl

[11] Grätzer G., General Lattice Theory, Akademie, Berlin, 1978 | MR | Zbl

[12] Hammer P. L., Rudeanu S., Méthodes booléenes en recherche opérationelle, Dunod, Paris, 1970 | MR | Zbl

[13] Kim K. H., Roush F. W., “Generalized fuzzy matrices”, Fuzzy Sets Systems, 4 (1980), 293–315 | DOI | MR | Zbl

[14] Poplavski V., “On orientability and degeneration of Boolean binary relation on a finite set”, Math. Logic in Asia. Proc. 9th Asian Logic Conf., World Scientific Press, Singapore, 2006, 203–214 | DOI | MR | Zbl

[15] Poplin P. L., Hartwig R. E., “Determinant identities over commutative semiring”, Linear Algebra Appl., 387 (2004), 99–132 | DOI | MR | Zbl

[16] Reutenauer Ch., Staubing H., “Inversion of matrices over a commutative semiring”, J. Algebra, 88:2 (1984), 350–360 | DOI | MR | Zbl