Finiteness of the standard basis of a~$T$-ideal containing Lie nilpotency of index~$4$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 75-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently the author presented a notion of standard basis for a $T$-ideal of the free associative algebra over a field of zero characteristic. It was proved that it is finite if the $T$-ideal contains either Lie nilpotency of index $3$ or a multilinear product of commutators of degree $2$. Here we prove the finiteness of the reduced standard basis of any $T$-ideal containing Lie nilpotency of index $4$.
@article{FPM_2012_17_5_a4,
     author = {V. N. Latyshev},
     title = {Finiteness of the standard basis of a~$T$-ideal containing {Lie} nilpotency of index~$4$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a4/}
}
TY  - JOUR
AU  - V. N. Latyshev
TI  - Finiteness of the standard basis of a~$T$-ideal containing Lie nilpotency of index~$4$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 75
EP  - 85
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a4/
LA  - ru
ID  - FPM_2012_17_5_a4
ER  - 
%0 Journal Article
%A V. N. Latyshev
%T Finiteness of the standard basis of a~$T$-ideal containing Lie nilpotency of index~$4$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 75-85
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a4/
%G ru
%F FPM_2012_17_5_a4
V. N. Latyshev. Finiteness of the standard basis of a~$T$-ideal containing Lie nilpotency of index~$4$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 75-85. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a4/