Finiteness of the standard basis of a~$T$-ideal containing Lie nilpotency of index~$4$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 75-85
Voir la notice de l'article provenant de la source Math-Net.Ru
Recently the author presented a notion of standard basis for a $T$-ideal of the free associative algebra over a field of zero characteristic. It was proved that it is finite if the $T$-ideal contains either Lie nilpotency of index $3$ or a multilinear product of commutators of degree $2$. Here we prove the finiteness of the reduced standard basis of any $T$-ideal containing Lie nilpotency of index $4$.
@article{FPM_2012_17_5_a4,
author = {V. N. Latyshev},
title = {Finiteness of the standard basis of a~$T$-ideal containing {Lie} nilpotency of index~$4$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {75--85},
publisher = {mathdoc},
volume = {17},
number = {5},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a4/}
}
TY - JOUR AU - V. N. Latyshev TI - Finiteness of the standard basis of a~$T$-ideal containing Lie nilpotency of index~$4$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 75 EP - 85 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a4/ LA - ru ID - FPM_2012_17_5_a4 ER -
V. N. Latyshev. Finiteness of the standard basis of a~$T$-ideal containing Lie nilpotency of index~$4$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 75-85. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a4/