Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_5_a14, author = {O. A. Shpyrko}, title = {The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {225--235}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/} }
TY - JOUR AU - O. A. Shpyrko TI - The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 225 EP - 235 VL - 17 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/ LA - ru ID - FPM_2012_17_5_a14 ER -
%0 Journal Article %A O. A. Shpyrko %T The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 225-235 %V 17 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/ %G ru %F FPM_2012_17_5_a14
O. A. Shpyrko. The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 225-235. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/
[1] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006
[2] Monakhov V. S., Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnykh $\pi$-razreshimykh grupp”, Diskret. mat., 13:3 (2001), 145–152 | DOI | MR | Zbl
[3] Monakhov V. S., Shpyrko O. A., “O maksimalnykh podgruppakh v konechnykh $\pi$-razreshimykh gruppakh”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 6, 3–8 | MR
[4] Chernikov N. S., Petravchuk A. P., “Kharakterizatsiya periodicheskikh lokalno razreshimykh grupp s razreshimymi i s konechnoeksponentnymi silovskimi $\pi$-podgruppami”, Ukr. mat. zhurn., 39:6 (1987), 761–767 | MR | Zbl
[5] Chernikov N. S., Petravchuk A. P., “O $\pi$-dline konechnykh $\pi$-razreshimykh grupp”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, Tr. Instituta matematiki AN Ukrainy, Kiev, 1993, 393–405 | MR
[6] Chernikov N. S., Petravchuk A. P., “Obobschënno razreshimye i obobschënno $\pi$-razreshimye faktorizuemye gruppy”, Vopr. algebry (Gomelskii gos. un-t), 1996, no. 10, 91–123
[7] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, M., 1984 | MR
[8] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl
[9] Shpyrko O. A., “O peresecheniyakh khollovykh podgrupp i $\pi$-dline $\pi$-razreshimoi gruppy”, Vesnik Vitsebskaga dzyarzhaǔnaga universiteta, 2000, no. 4(18), 82–89
[10] Shpyrko O. A., “Khollovy podgruppy i nilpotentnaya $\pi$-dlina $\pi$-razreshimoi gruppy”, Vestsi NAN Belarusi. Cep. fiz.-mat. navuk, 2001, no. 2, 48–50 | MR
[11] Shpyrko O. A., “Nilpotentnaya $\pi$-dlina konechnoi $\pi$-razreshimoi gruppy i kommutant eë $\pi$-khollovoi podgruppy”, Tavricheskii vestn. informatiki i matematiki, 2004, no. 1, 106–112
[12] Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy s ogranicheniyami na podgruppy”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 1, 11–16 | MR
[13] Hall P., Higman G., “On the $p$-length of a $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3 (1956), 1–42 | DOI | MR | Zbl
[14] Huppert B., Endliche Gruppen, v. I, Springer, Berlin, 1967 | MR | Zbl
[15] Kazarin L. S., “Soluble product of groups”, Infinite Groups 94, Walter de Gruyter, Berlin, 1995, 111–123 | MR