The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 225-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of the derived $\pi$-length for finite $\pi$-soluble groups is introduced and its elementary properties are described. The dependence between the $\pi$-length, nilpotent $\pi$-length, and derived $\pi$-length, and also between the derived and nilpotent lengths of a $\pi$-Hall subgroup is determined.
@article{FPM_2012_17_5_a14,
     author = {O. A. Shpyrko},
     title = {The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {225--235},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/}
}
TY  - JOUR
AU  - O. A. Shpyrko
TI  - The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 225
EP  - 235
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/
LA  - ru
ID  - FPM_2012_17_5_a14
ER  - 
%0 Journal Article
%A O. A. Shpyrko
%T The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 225-235
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/
%G ru
%F FPM_2012_17_5_a14
O. A. Shpyrko. The derived $\pi$-length, nilpotent $\pi$-length, and simple $\pi$-length of finite $\pi$-soluble groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 225-235. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a14/

[1] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[2] Monakhov V. S., Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnykh $\pi$-razreshimykh grupp”, Diskret. mat., 13:3 (2001), 145–152 | DOI | MR | Zbl

[3] Monakhov V. S., Shpyrko O. A., “O maksimalnykh podgruppakh v konechnykh $\pi$-razreshimykh gruppakh”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 6, 3–8 | MR

[4] Chernikov N. S., Petravchuk A. P., “Kharakterizatsiya periodicheskikh lokalno razreshimykh grupp s razreshimymi i s konechnoeksponentnymi silovskimi $\pi$-podgruppami”, Ukr. mat. zhurn., 39:6 (1987), 761–767 | MR | Zbl

[5] Chernikov N. S., Petravchuk A. P., “O $\pi$-dline konechnykh $\pi$-razreshimykh grupp”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, Tr. Instituta matematiki AN Ukrainy, Kiev, 1993, 393–405 | MR

[6] Chernikov N. S., Petravchuk A. P., “Obobschënno razreshimye i obobschënno $\pi$-razreshimye faktorizuemye gruppy”, Vopr. algebry (Gomelskii gos. un-t), 1996, no. 10, 91–123

[7] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, M., 1984 | MR

[8] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[9] Shpyrko O. A., “O peresecheniyakh khollovykh podgrupp i $\pi$-dline $\pi$-razreshimoi gruppy”, Vesnik Vitsebskaga dzyarzhaǔnaga universiteta, 2000, no. 4(18), 82–89

[10] Shpyrko O. A., “Khollovy podgruppy i nilpotentnaya $\pi$-dlina $\pi$-razreshimoi gruppy”, Vestsi NAN Belarusi. Cep. fiz.-mat. navuk, 2001, no. 2, 48–50 | MR

[11] Shpyrko O. A., “Nilpotentnaya $\pi$-dlina konechnoi $\pi$-razreshimoi gruppy i kommutant eë $\pi$-khollovoi podgruppy”, Tavricheskii vestn. informatiki i matematiki, 2004, no. 1, 106–112

[12] Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy s ogranicheniyami na podgruppy”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2008, no. 1, 11–16 | MR

[13] Hall P., Higman G., “On the $p$-length of a $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3 (1956), 1–42 | DOI | MR | Zbl

[14] Huppert B., Endliche Gruppen, v. I, Springer, Berlin, 1967 | MR | Zbl

[15] Kazarin L. S., “Soluble product of groups”, Infinite Groups 94, Walter de Gruyter, Berlin, 1995, 111–123 | MR