Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_5_a11, author = {A. A. Tuganbaev}, title = {Modules with {Nakayama's} property}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {179--185}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/} }
A. A. Tuganbaev. Modules with Nakayama's property. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 179-185. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/
[1] Kash F., Moduli i koltsa, Mir, M., 1981 | MR
[2] Tuganbaev A. A., “Koltsa, nad kotorymi kazhdyi modul obladaet maksimalnym podmodulem”, Mat. zametki, 61:3 (1997), 407–415 | DOI | MR | Zbl
[3] Azizi A., “On generalization of Nakayama's lemma”, Glasgow Math. J., 52 (2010), 605–617 | DOI | MR | Zbl
[4] Bass H., “Finistic dimension and a homological generalization of semiprimary rings”, Trans. Am. Math. Soc., 95:3 (1960), 466–488 | DOI | MR | Zbl
[5] Matsumura H., Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1992 | MR
[6] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl