Modules with Nakayama's property
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 179-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modules $M_A$ with Nakayama's property are studied. In particular, for a right invariant ring $A$, it is proved that all right $A$-modules satisfy Nakayama's property if and only if the ring $A$ is right perfect.
@article{FPM_2012_17_5_a11,
     author = {A. A. Tuganbaev},
     title = {Modules with {Nakayama's} property},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Modules with Nakayama's property
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 179
EP  - 185
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/
LA  - ru
ID  - FPM_2012_17_5_a11
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Modules with Nakayama's property
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 179-185
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/
%G ru
%F FPM_2012_17_5_a11
A. A. Tuganbaev. Modules with Nakayama's property. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 179-185. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/

[1] Kash F., Moduli i koltsa, Mir, M., 1981 | MR

[2] Tuganbaev A. A., “Koltsa, nad kotorymi kazhdyi modul obladaet maksimalnym podmodulem”, Mat. zametki, 61:3 (1997), 407–415 | DOI | MR | Zbl

[3] Azizi A., “On generalization of Nakayama's lemma”, Glasgow Math. J., 52 (2010), 605–617 | DOI | MR | Zbl

[4] Bass H., “Finistic dimension and a homological generalization of semiprimary rings”, Trans. Am. Math. Soc., 95:3 (1960), 466–488 | DOI | MR | Zbl

[5] Matsumura H., Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1992 | MR

[6] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl