Modules with Nakayama's property
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 179-185
Modules $M_A$ with Nakayama's property are studied. In particular, for a right invariant ring $A$, it is proved that all right $A$-modules satisfy Nakayama's property if and only if the ring $A$ is right perfect.
@article{FPM_2012_17_5_a11,
author = {A. A. Tuganbaev},
title = {Modules with {Nakayama's} property},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {179--185},
year = {2012},
volume = {17},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/}
}
A. A. Tuganbaev. Modules with Nakayama's property. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 179-185. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a11/
[1] Kash F., Moduli i koltsa, Mir, M., 1981 | MR
[2] Tuganbaev A. A., “Koltsa, nad kotorymi kazhdyi modul obladaet maksimalnym podmodulem”, Mat. zametki, 61:3 (1997), 407–415 | DOI | MR | Zbl
[3] Azizi A., “On generalization of Nakayama's lemma”, Glasgow Math. J., 52 (2010), 605–617 | DOI | MR | Zbl
[4] Bass H., “Finistic dimension and a homological generalization of semiprimary rings”, Trans. Am. Math. Soc., 95:3 (1960), 466–488 | DOI | MR | Zbl
[5] Matsumura H., Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1992 | MR
[6] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl