Asymptotic distribution of the size of a~$d$-dimensional model of an open string
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a statistical description of the configuration of a $d$-dimensional model of an open string that avoids self-intersection. For the distribution of the distance between the ends of the string we have obtained an exact integral equation similar to the well-known Dyson equation in quantum field theory. The resulting equation is invariant under continuous transformations of the renormalization group, which allows one to use the renormalization group method to establish the desired asymptotic distribution.
@article{FPM_2012_17_5_a0,
     author = {V. I. Alkhimov},
     title = {Asymptotic distribution of the size of a~$d$-dimensional model of an open string},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a0/}
}
TY  - JOUR
AU  - V. I. Alkhimov
TI  - Asymptotic distribution of the size of a~$d$-dimensional model of an open string
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 3
EP  - 20
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a0/
LA  - ru
ID  - FPM_2012_17_5_a0
ER  - 
%0 Journal Article
%A V. I. Alkhimov
%T Asymptotic distribution of the size of a~$d$-dimensional model of an open string
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 3-20
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a0/
%G ru
%F FPM_2012_17_5_a0
V. I. Alkhimov. Asymptotic distribution of the size of a~$d$-dimensional model of an open string. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 5, pp. 3-20. http://geodesic.mathdoc.fr/item/FPM_2012_17_5_a0/

[1] Alkhimov V. I., “Sluchainyi protsess v odnorodnom gaussovskom pole”, Fundament. i prikl. mat., 15:2 (2009), 3–21 | MR

[2] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 2, Nauka, M., 1966 | MR

[3] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[5] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl