Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_4_a2, author = {E. A. Vassilieva and G. Schaeffer}, title = {A~combinatorial way of counting unicellular maps and constellations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {25--52}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a2/} }
TY - JOUR AU - E. A. Vassilieva AU - G. Schaeffer TI - A~combinatorial way of counting unicellular maps and constellations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 25 EP - 52 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a2/ LA - ru ID - FPM_2012_17_4_a2 ER -
E. A. Vassilieva; G. Schaeffer. A~combinatorial way of counting unicellular maps and constellations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 4, pp. 25-52. http://geodesic.mathdoc.fr/item/FPM_2012_17_4_a2/
[1] Adrianov N. M., “An analogue of the Harer–Zagier formula for unicellular two-color maps”, Funct. Anal. Appl., 31:3 (1997), 149–155 | DOI | MR | Zbl
[2] Cori R., Machi A., “Maps, hypermaps and their automorphisms: a survey. I”, Exposition. Math., 10 (1992), 403–427 | MR | Zbl
[3] Goulden I. P., Jackson D. M., Combinatorial Enumeration, Wiley, New York, 1983 | MR | Zbl
[4] Goulden I. P., Nica A., “A direct bijection for the Harer–Zagier formula”, J. Combin. Theory Ser. A, 111 (2005), 224–238 | DOI | MR | Zbl
[5] Goupil A., Schaeffer G., “Factoring $n$-cycles and counting maps of given genus”, European. J. Combin., 19:7 (1998), 819–834 | DOI | MR | Zbl
[6] Harer J., Zagier D., “The Euler characteristic of the moduli space of curves”, Invent. Math., 85 (1986), 457–486 | DOI | MR
[7] Jackson D. M., “Some combinatorial problems associated with products of conjugacy classes of the symmetric group”, J. Combin. Theory Ser. A, 49 (1988), 363–369 | DOI | MR | Zbl
[8] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl
[9] Lass B., “Démonstration combinatoire de la formule de Harer–Zagier”, C. R. Acad. Sci. Paris Sér. I, 333 (2001), 155–160 | DOI | MR | Zbl
[10] Schaeffer G., Vassilieva E., “A bijective proof of Jackson's formula for the number of factorizations of a cycle”, J. Combin. Theory Ser. A, 115:6 (2008), 903–924 | DOI | MR | Zbl
[11] Schaeffer G., Vassilieva E., “Partitioned cacti: a bijective approach to the cycle factorization problem”, Proc. of FPSAC' 08
[12] Stanton D., White D., Constructive Combinatorics, Springer, New York, 1986 | MR | Zbl