Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 85-96
In this paper, we describe automorphisms of the lattice $\mathbb A$ of all subalgebras of the semiring $\mathbb R^+[x]$ of polynomials in one variable over the semifield $\mathbb R^+$ of nonnegative real numbers. It is proved that any automorphism of the lattice $\mathbb A$ is generated by an automorphism of the semiring $\mathbb R^+[x]$ that is induced by a substitution $x\mapsto px$ for some positive real number $p$. It follows that the automorphism group of the lattice $\mathbb A$ is isomorphic to the group of all positive real numbers with multiplication. A technique of unigenerated subalgebras is applied.
@article{FPM_2012_17_3_a6,
author = {V. V. Sidorov},
title = {Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {85--96},
year = {2012},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a6/}
}
TY - JOUR AU - V. V. Sidorov TI - Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 85 EP - 96 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a6/ LA - ru ID - FPM_2012_17_3_a6 ER -
V. V. Sidorov. Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 85-96. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a6/
[1] Burbaki N., Algebra (Mnogochleny i polya. Uporyadochennye gruppy), Nauka, M., 1965 | MR
[2] Grettser G., Obschaya teoriya reshëtok, Mir, M., 1982 | MR
[3] Sidorov V. V., “O stroenii reshëtochnykh izomorfizmov polukolets nepreryvnykh funktsii”, Tr. Mat. tsentra im. N. I. Lobachevskogo, 39, 2009, 339–341