Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 85-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe automorphisms of the lattice $\mathbb A$ of all subalgebras of the semiring $\mathbb R^+[x]$ of polynomials in one variable over the semifield $\mathbb R^+$ of nonnegative real numbers. It is proved that any automorphism of the lattice $\mathbb A$ is generated by an automorphism of the semiring $\mathbb R^+[x]$ that is induced by a substitution $x\mapsto px$ for some positive real number $p$. It follows that the automorphism group of the lattice $\mathbb A$ is isomorphic to the group of all positive real numbers with multiplication. A technique of unigenerated subalgebras is applied.
@article{FPM_2012_17_3_a6,
     author = {V. V. Sidorov},
     title = {Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a6/}
}
TY  - JOUR
AU  - V. V. Sidorov
TI  - Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 85
EP  - 96
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a6/
LA  - ru
ID  - FPM_2012_17_3_a6
ER  - 
%0 Journal Article
%A V. V. Sidorov
%T Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 85-96
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a6/
%G ru
%F FPM_2012_17_3_a6
V. V. Sidorov. Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 85-96. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a6/

[1] Burbaki N., Algebra (Mnogochleny i polya. Uporyadochennye gruppy), Nauka, M., 1965 | MR

[2] Grettser G., Obschaya teoriya reshëtok, Mir, M., 1982 | MR

[3] Sidorov V. V., “O stroenii reshëtochnykh izomorfizmov polukolets nepreryvnykh funktsii”, Tr. Mat. tsentra im. N. I. Lobachevskogo, 39, 2009, 339–341