Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_3_a3, author = {Yu. V. Zhuchok}, title = {Endomorphism semigroups of some free products}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {51--60}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a3/} }
Yu. V. Zhuchok. Endomorphism semigroups of some free products. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 51-60. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a3/
[1] Vazhenin Yu. M., “Ob elementarnoi opredelyaemosti i elementarnoi kharakterizuemosti klassov refleksivnykh grafov”, Izv. vyssh. uchebn. zaved. Matematika, 1972, no. 7, 3–11 | MR | Zbl
[2] Gluskin L. M., “Polugruppy i koltsa endomorfizmov lineinykh prostranstv”, Izv. AN SSSR. Ser. mat., 23:6 (1959), 841–870 | MR | Zbl
[3] Gluskin L. M., “Idealy polugrupp”, Mat. sb., 55(97):4 (1961), 421–448 | MR | Zbl
[4] Gluskin L. M., “Ob endomorfizmakh modulei”, Algebra i matematicheskaya logika, KGU, Kiev, 1966, 3–20 | MR
[5] Zhuchok A. V., “Polugruppy endomorfizmov svobodnykh proizvedenii”, Visnik Donetskogo un-tu. Ser. A. Prirodnichi nauki, 2006, no. 2, 7–10 | Zbl
[6] Puusemp P., “Polugruppy endomorfizmov obobschënnykh grupp kvaternionov”, Uchënye zapiski Tartuskogo un-ta, 390 (1976), 84–103 | MR
[7] Usenko V. M., “Endomorfizmy vpolne $0$-prostykh polugrupp”, Voprosy algebry, 13, 1998, 92–119
[8] Usenko V. M., “Endomorfizmy svobodnykh grupp”, Voprosy algebry, 14, 1999, 166–172
[9] Usenko V. M., “Polugruppy endomorfizmov svobodnykh grupp”, Izv. Gomelsk. gos. un-ta im. F. Skoriny. Voprosy algebry, 2000, no. 3(16), 182–185 | Zbl
[10] Fleisher V., “O spletenii monoidov s kategoriyami”, Tr. Akad. nauk Estonskoi SSR, 35, 1986, 237–243 | MR
[11] Shneperman L. B., “Polugruppy endomorfizmov kvaziuporyadochennykh mnozhestv”, Uchënye zapiski LGPU im. A. I. Gertsena, 238, 1962, 21–37 | Zbl
[12] Corner A. L., “Every countable reduced torsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 13:52 (1963), 687–710 | DOI | MR | Zbl
[13] Fleischer V., Knauer U., “Endomorphism monoids of acts are wreath products of monoids with small categories”, Semigroups, Theory and Applications, Proc. Conf. Oberwolfach/FRG 1986, Lect. Notes Math., 1320, Springer, Berlin, 1988, 84–96 | DOI | MR
[14] Knauer U., Nieporte M., “Endomorphisms of graphs. I. The monoid of strong endomorphisms”, Arch. Math., 52 (1989), 607–614 | DOI | MR | Zbl
[15] Mazorchuk V., “Endomorphisms of $\mathfrak{B_n}$, $\mathfrak{PB_n}$, and $\mathfrak{C_n}$”, Commun. Algebra, 30 (2002), 3489–3513 | DOI | MR | Zbl
[16] Puusemp P., “A characterization of divisible and torsion Abelian groups by their endomorphism semigroups”, Algebras Groups Geom., 16 (1999), 183–193 | MR | Zbl
[17] Schein B. M., Teclezghi B., “Endomorphisms of finite symmetric inverse semigroups”, J. Algebra, 198 (1997), 300–310 | DOI | MR | Zbl
[18] Schein B. M., Teclezghi B., “Endomorphisms of finite full transformation semigroups”, Proc. Amer. Math. Soc., 126 (1998), 2579–2587 | DOI | MR | Zbl
[19] Zhuchok A. V., “Endomorphisms semigroups of orthogonal sum and band of semigroups”, XII Int. Sci. Kravchuk Conf., v. I, Kiev, 2008 | Zbl
[20] Zhuchok Y. V., “Endomorphism semigroups of 2-nilpotent binary relations”, J. Math. Sci., 164:1 (2010), 49–55 | DOI | MR | Zbl