Modules over integer group rings of locally soluble groups with minimax restriction
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 25-37

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb Z$ be the ring of integers, $A$ be a $\mathbb ZG$-module, where $A/C_A(G)$ is not a minimax $\mathbb Z$-module, $C_G(A)=1$, and $G$ is a locally soluble group. Let $L_\mathrm{nm}(G)$ be the system of all subgroups $H\leq G$ such that quotient modules $A/C_A(H)$ are not minimax $\mathbb Z$-modules. The author studies $\mathbb ZG$-modules $A$ such that $L_\mathrm{nm}(G)$ satisfies the minimal condition as an ordered set. It is proved that a locally soluble group $G$ with these conditions is soluble. The structure of the group $G$ is described.
@article{FPM_2012_17_3_a1,
     author = {O. Yu. Dashkova},
     title = {Modules over integer group rings of locally soluble groups with minimax restriction},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - Modules over integer group rings of locally soluble groups with minimax restriction
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 25
EP  - 37
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/
LA  - ru
ID  - FPM_2012_17_3_a1
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T Modules over integer group rings of locally soluble groups with minimax restriction
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 25-37
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/
%G ru
%F FPM_2012_17_3_a1
O. Yu. Dashkova. Modules over integer group rings of locally soluble groups with minimax restriction. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 25-37. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/