Modules over integer group rings of locally soluble groups with minimax restriction
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 25-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb Z$ be the ring of integers, $A$ be a $\mathbb ZG$-module, where $A/C_A(G)$ is not a minimax $\mathbb Z$-module, $C_G(A)=1$, and $G$ is a locally soluble group. Let $L_\mathrm{nm}(G)$ be the system of all subgroups $H\leq G$ such that quotient modules $A/C_A(H)$ are not minimax $\mathbb Z$-modules. The author studies $\mathbb ZG$-modules $A$ such that $L_\mathrm{nm}(G)$ satisfies the minimal condition as an ordered set. It is proved that a locally soluble group $G$ with these conditions is soluble. The structure of the group $G$ is described.
@article{FPM_2012_17_3_a1,
     author = {O. Yu. Dashkova},
     title = {Modules over integer group rings of locally soluble groups with minimax restriction},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - Modules over integer group rings of locally soluble groups with minimax restriction
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 25
EP  - 37
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/
LA  - ru
ID  - FPM_2012_17_3_a1
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T Modules over integer group rings of locally soluble groups with minimax restriction
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 25-37
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/
%G ru
%F FPM_2012_17_3_a1
O. Yu. Dashkova. Modules over integer group rings of locally soluble groups with minimax restriction. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 25-37. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/

[1] Dashkova O. Yu., “Ob odnom klasse modulei nad gruppovymi koltsami razreshimykh grupp s ogranicheniyami na nekotorye sistemy podgrupp”, Fundament. i prikl. mat., 14:7 (2008), 111–119 | MR

[2] Dashkova O. Yu., “Moduli nad tselochislennymi gruppovymi koltsami lokalno razreshimykh grupp s ogranicheniyami na nekotorye sistemy podgrupp”, Dopovidi Nats. akad. nauk Ukraïni. Mat., 2009, no. 2, 14–19 | MR | Zbl

[3] Dashkova O. Yu., “Ob odnom klasse modulei nad gruppovymi koltsami lokalno razreshimykh grupp”, Tr. In-ta mat. i mekh. UrO RAN, 15, no. 2, 2009, 94–98 | Zbl

[4] Dashkova O. Yu., “Ob odnom klasse modulei nad tselochislennymi gruppovymi koltsami lokalno razreshimykh grupp”, Ukr. mat. zhurn., 61:1 (2009), 44–51 | MR | Zbl

[5] Zaitsev D. I., “O razreshimykh podgruppakh lokalno razreshimykh grupp”, DAN SSSR, 214:6 (1974), 1250–1253

[6] Kurdachenko L. A., “O gruppakh s minimaksnymi klassami sopryazhënnykh elementov”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, Akademiya nauk Ukrainy, Kiev, 1993, 160–177 | MR

[7] Merzlyakov Yu. I., Ratsionalnye gruppy, Nauka, M., 1980 | MR | Zbl

[8] Smirnov D. M., “O gruppakh avtomorfizmov razreshimykh grupp”, Mat. sb., 32(74):2 (1953), 365–384 | MR | Zbl

[9] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1973

[10] Dixon M. R., Evans M. J., Kurdachenko L. A., “Linear groups with the minimal condition on subgroups of infinite central dimension”, J. Algebra, 277:1 (2004), 172–186 | DOI | MR | Zbl

[11] Kurdachenko L. A., Otal J., Subbotin I. Ya., Artinian Modules over Group Rings, Birkhäuser, Basel, 2007 | MR | Zbl

[12] Kurdachenko L. A., Subbotin I. Ya., “Linear groups with the maximal condition on subgroups of infinite central dimension”, Publ. Mat., 50 (2006), 103–131 | DOI | MR | Zbl

[13] Kurdachenko L. A., Subbotin I. Ya., Semko N. N., Insight into Modules over Dedekind Domains, National Academy of Sciences of Ukraine, Institute of Mathematics, Kiev, 2008 | Zbl

[14] Robinson D. J. R., Finiteness Conditions and Generalized Soluble Groups, Ergebnisse Math. ihrer Grenzgebiete, Springer, Berlin, 1972

[15] Wehrfritz B. A. F., Infinite Linear Groups, Ergebnisse Math. ihrer Grenzgebiete, Springer, Berlin, 1973 | MR | Zbl