Modules over integer group rings of locally soluble groups with minimax restriction
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 25-37
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbb Z$ be the ring of integers, $A$ be a $\mathbb ZG$-module, where $A/C_A(G)$ is not a minimax $\mathbb Z$-module, $C_G(A)=1$, and $G$ is a locally soluble group. Let $L_\mathrm{nm}(G)$ be the system of all subgroups $H\leq G$ such that quotient modules $A/C_A(H)$ are not minimax $\mathbb Z$-modules. The author studies $\mathbb ZG$-modules $A$ such that $L_\mathrm{nm}(G)$ satisfies the minimal condition as an ordered set. It is proved that a locally soluble group $G$ with these conditions is soluble. The structure of the group $G$ is described.
@article{FPM_2012_17_3_a1,
author = {O. Yu. Dashkova},
title = {Modules over integer group rings of locally soluble groups with minimax restriction},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {25--37},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/}
}
TY - JOUR AU - O. Yu. Dashkova TI - Modules over integer group rings of locally soluble groups with minimax restriction JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 25 EP - 37 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/ LA - ru ID - FPM_2012_17_3_a1 ER -
O. Yu. Dashkova. Modules over integer group rings of locally soluble groups with minimax restriction. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 3, pp. 25-37. http://geodesic.mathdoc.fr/item/FPM_2012_17_3_a1/