Pseudocharacters on free groups, invariant with respect to some types of endomorphisms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 167-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate methods for constructing nontrivial pseudocharacters on free group $F_n$ invariant with respect to certain types of endomorphisms. We find some conditions for endomorphisms of the free group under which there is a nontrivial pseudocharacter that is invariant with respect to these endomorphisms. We consider free products $R=\tilde R*\prod_{i=k}^n\langle r_i \rangle$, where one factor is $F_n$, and the other factor is a group on which there is a pseudocharacter. For such products we obtain a similar result about the conditions of existence of nontrivial pseudocharacters invariant with respect to certain endomorphisms.
@article{FPM_2012_17_2_a5,
     author = {D. Z. Kagan},
     title = {Pseudocharacters on free groups, invariant with respect to some types of endomorphisms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {167--176},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a5/}
}
TY  - JOUR
AU  - D. Z. Kagan
TI  - Pseudocharacters on free groups, invariant with respect to some types of endomorphisms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 167
EP  - 176
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a5/
LA  - ru
ID  - FPM_2012_17_2_a5
ER  - 
%0 Journal Article
%A D. Z. Kagan
%T Pseudocharacters on free groups, invariant with respect to some types of endomorphisms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 167-176
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a5/
%G ru
%F FPM_2012_17_2_a5
D. Z. Kagan. Pseudocharacters on free groups, invariant with respect to some types of endomorphisms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a5/

[1] Bardakov V. G., “O shirine verbalnykh podgrupp nekotorykh svobodnykh konstruktsii”, Algebra i logika, 36:5 (1997), 494–517 | MR | Zbl

[2] Grigorchuk R. I., “Ogranichennye kogomologii gruppovykh konstruktsii”, Mat. zametki, 59:4 (1996), 546–550 | DOI | MR | Zbl

[3] Kagan D. Z., “O suschestvovanii netrivialnykh psevdokharakterov na anomalnykh proizvedeniyakh grupp”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2004, no. 6, 24–28 | MR | Zbl

[4] Kagan D. Z., “Psevdokharaktery na anomalnykh proizvedeniyakh lokalno indikabelnykh grupp”, Fundament. i prikl. mat., 12:3 (2006), 55–64 | MR | Zbl

[5] Faiziev V. A., “Ob ustoichivosti odnogo funktsionalnogo uravneniya na gruppakh”, Uspekhi mat. nauk, 48:1 (1993), 193–194 | MR | Zbl

[6] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funkts. analiz i ego pril., 25:2 (1991), 70–73 | MR | Zbl