Rolling simplexes and their commensurability.~I. The axiom and criterion of incompressibility and the momentum lemma
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 87-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

A unified geometric field theory is constructed.
@article{FPM_2012_17_2_a2,
     author = {O. V. Gerasimova},
     title = {Rolling simplexes and their {commensurability.~I.} {The} axiom and criterion of incompressibility and the momentum lemma},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {87--95},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/}
}
TY  - JOUR
AU  - O. V. Gerasimova
TI  - Rolling simplexes and their commensurability.~I. The axiom and criterion of incompressibility and the momentum lemma
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 87
EP  - 95
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/
LA  - ru
ID  - FPM_2012_17_2_a2
ER  - 
%0 Journal Article
%A O. V. Gerasimova
%T Rolling simplexes and their commensurability.~I. The axiom and criterion of incompressibility and the momentum lemma
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 87-95
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/
%G ru
%F FPM_2012_17_2_a2
O. V. Gerasimova. Rolling simplexes and their commensurability.~I. The axiom and criterion of incompressibility and the momentum lemma. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 87-95. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/

[1] Razmyslov Yu. P., Gerasimova O. V., “Rolling simplexes and their commensurability (zakony mekhaniki kak problema vybora mezhdu metrikoi i meroi)”, Fundament. i prikl. mat., 16:3 (2010), 123–126

[2] Kholl M., Teoriya grupp, Izd. inostr. lit., M., 1962