Rolling simplexes and their commensurability. I. The axiom and criterion of incompressibility and the momentum lemma
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 87-95
Cet article a éte moissonné depuis la source Math-Net.Ru
A unified geometric field theory is constructed.
@article{FPM_2012_17_2_a2,
author = {O. V. Gerasimova},
title = {Rolling simplexes and their {commensurability.~I.} {The} axiom and criterion of incompressibility and the momentum lemma},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {87--95},
year = {2012},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/}
}
TY - JOUR AU - O. V. Gerasimova TI - Rolling simplexes and their commensurability. I. The axiom and criterion of incompressibility and the momentum lemma JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 87 EP - 95 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/ LA - ru ID - FPM_2012_17_2_a2 ER -
%0 Journal Article %A O. V. Gerasimova %T Rolling simplexes and their commensurability. I. The axiom and criterion of incompressibility and the momentum lemma %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 87-95 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/ %G ru %F FPM_2012_17_2_a2
O. V. Gerasimova. Rolling simplexes and their commensurability. I. The axiom and criterion of incompressibility and the momentum lemma. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 2, pp. 87-95. http://geodesic.mathdoc.fr/item/FPM_2012_17_2_a2/
[1] Razmyslov Yu. P., Gerasimova O. V., “Rolling simplexes and their commensurability (zakony mekhaniki kak problema vybora mezhdu metrikoi i meroi)”, Fundament. i prikl. mat., 16:3 (2010), 123–126
[2] Kholl M., Teoriya grupp, Izd. inostr. lit., M., 1962