Classification of matrix subalgebras of length~1
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 169-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the length of a finite system of generators of a given algebra $\mathcal A$ as the smallest number $k$ such that words of length not greater than $k$ generate $\mathcal A$ as a vector space, and the length of the algebra is the maximum of the lengths of its systems of generators. In this paper, we obtain a classification of matrix subalgebras of length 1 up to conjugation. In particular, we describe arbitrary commutative matrix subalgebras of length 1, as well as those that are maximal with respect to inclusion.
@article{FPM_2012_17_1_a9,
     author = {O. V. Markova},
     title = {Classification of matrix subalgebras of length~1},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--188},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/}
}
TY  - JOUR
AU  - O. V. Markova
TI  - Classification of matrix subalgebras of length~1
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 169
EP  - 188
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/
LA  - ru
ID  - FPM_2012_17_1_a9
ER  - 
%0 Journal Article
%A O. V. Markova
%T Classification of matrix subalgebras of length~1
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 169-188
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/
%G ru
%F FPM_2012_17_1_a9
O. V. Markova. Classification of matrix subalgebras of length~1. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 169-188. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/

[1] Alpin Yu. A., Ikramov Kh. D., “Ob unitarnom podobii matrichnykh semeistv”, Mat. zametki, 74:6 (2003), 815–826 | DOI | MR | Zbl

[2] Markova O. V., “Vychislenie dlin matrichnykh podalgebr spetsialnogo vida”, Fundament. i prikl. mat., 13:4 (2007), 165–197 | MR | Zbl

[3] Markova O. V., “Kharakterizatsiya kommutativnykh matrichnykh podalgebr maksimalnoi dliny nad proizvolnym polem”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2009, no. 5, 53–55 | MR

[4] Markova O. V., “O nekotorykh svoistvakh funktsii dliny”, Mat. zametki, 87:1 (2010), 83–91 | DOI | MR | Zbl

[5] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR

[6] Suprunenko D. A., Tyshkevich R. I., Perestanovochnye matritsy, URSS, M., 2003 | MR | Zbl

[7] Al'pin Yu. A., Ikramov Kh. D., “Reducibility theorems for pairs of matrices as rational criteria”, Linear Algebra Appl., 313 (2000), 155–161 | DOI | MR | Zbl

[8] Brown W. C., Matrices over Commutative Rings, Marcel Dekker, New York, 1993 | MR

[9] Brown W. C., Call F. W., “Maximal commutative subalgebras of $n\times n$ matrices”, Commun. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl

[10] Courter R. C., “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32 (1965), 225–232 | DOI | MR | Zbl

[11] Gerstenhaber M., “On dominance and varieties of commuting matrices”, Ann. Math., 73:2 (1961), 324–348 | DOI | MR | Zbl

[12] Guterman A. E., Markova O. V., “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl

[13] Jacobson N., “Schur's theorems on commutative matrices”, Bull. Am. Math. Soc., 50 (1944), 431–436 | DOI | MR | Zbl

[14] Laffey T. J., “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR | Zbl

[15] Laffey T. J., Lazarus S., “Two-generated commutative matrix subalgebras”, Linear Algebra Appl., 147 (1991), 249–273 | DOI | MR | Zbl

[16] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[17] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[18] Schur I., “Zur Theorie der vertauschbären Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | DOI | Zbl

[19] Youngkwon Song, “A construction of maximal commutative subalgebra of matrix algebras”, J. Korean Math. Soc., 40:2 (2003), 241–250 | DOI | MR | Zbl