Classification of matrix subalgebras of length~1
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 169-188

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the length of a finite system of generators of a given algebra $\mathcal A$ as the smallest number $k$ such that words of length not greater than $k$ generate $\mathcal A$ as a vector space, and the length of the algebra is the maximum of the lengths of its systems of generators. In this paper, we obtain a classification of matrix subalgebras of length 1 up to conjugation. In particular, we describe arbitrary commutative matrix subalgebras of length 1, as well as those that are maximal with respect to inclusion.
@article{FPM_2012_17_1_a9,
     author = {O. V. Markova},
     title = {Classification of matrix subalgebras of length~1},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--188},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/}
}
TY  - JOUR
AU  - O. V. Markova
TI  - Classification of matrix subalgebras of length~1
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 169
EP  - 188
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/
LA  - ru
ID  - FPM_2012_17_1_a9
ER  - 
%0 Journal Article
%A O. V. Markova
%T Classification of matrix subalgebras of length~1
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 169-188
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/
%G ru
%F FPM_2012_17_1_a9
O. V. Markova. Classification of matrix subalgebras of length~1. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 169-188. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/