Classification of matrix subalgebras of length~1
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 169-188
Voir la notice de l'article provenant de la source Math-Net.Ru
We define the length of a finite system of generators of a given algebra $\mathcal A$ as the smallest number $k$ such that words of length not greater than $k$ generate $\mathcal A$ as a vector space, and the length of the algebra is the maximum of the lengths of its systems of generators. In this paper, we obtain a classification of matrix subalgebras of length 1 up to conjugation. In particular, we describe arbitrary commutative matrix subalgebras of length 1, as well as those that are maximal with respect to inclusion.
@article{FPM_2012_17_1_a9,
author = {O. V. Markova},
title = {Classification of matrix subalgebras of length~1},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {169--188},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/}
}
O. V. Markova. Classification of matrix subalgebras of length~1. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 169-188. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a9/