Maximal tori of the Frank algebra
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 143-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of conjugate classes of maximal tori and corresponding 1-sections is obtained for the exceptional simple Lie $p$-algebra of characteristic 3 of the Frank series. In particular, it is proved that all maximal tori are two-dimensional and they are Cartan subalgebras.
@article{FPM_2012_17_1_a7,
     author = {M. I. Kuznetsov and O. A. Mulyar},
     title = {Maximal tori of the {Frank} algebra},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {143--154},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a7/}
}
TY  - JOUR
AU  - M. I. Kuznetsov
AU  - O. A. Mulyar
TI  - Maximal tori of the Frank algebra
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 143
EP  - 154
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a7/
LA  - ru
ID  - FPM_2012_17_1_a7
ER  - 
%0 Journal Article
%A M. I. Kuznetsov
%A O. A. Mulyar
%T Maximal tori of the Frank algebra
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 143-154
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a7/
%G ru
%F FPM_2012_17_1_a7
M. I. Kuznetsov; O. A. Mulyar. Maximal tori of the Frank algebra. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a7/

[1] Veisfeiler B. Yu., Kats V. G., “Eksponentsialy v algebrakh Li kharakteristiki $p$”, Izv. AN SSSR. Ser. mat., 35:4 (1971), 762–788 | MR | Zbl

[2] Dëmushkin S. P., “Podalgebry Kartana prostykh $p$-algebr Li $W_n$ i $S_n$”, Sib. mat. zhurn., 11 (1970), 310–325

[3] Dëmushkin S. P., “Podalgebry Kartana prostykh neklassicheskikh $p$-algebr Li”, Izv. AN SSSR. Ser. mat., 36:5 (1972), 915–932 | MR | Zbl

[4] Ermolaev Yu. B., “O semeistve prostykh algebr Li nad polem kharakteristiki 3”, V Vsesoyuznyi simpozium po teorii kolets, algebr i modulei, Tezisy soobschenii, Novosibirsk, 1982, 52–53

[5] Kostrikin A. I., “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. mat., 34:4 (1970), 744–756 | MR | Zbl

[6] Kuznetsov M. I., “Modulyarnye prostye algebry Li s razreshimoi maksimalnoi podalgebroi”, Mat. sb., 101(143):1 (1976), 77–86 | MR | Zbl

[7] Kuznetsov M. I., “Klassifikatsiya prostykh graduirovannykh algebr Li s nepoluprostoi nulevoi komponentoi”, Mat. sb., 180:2 (1989), 147–158 | MR | Zbl

[8] Kuznetsov M. I., “Usechënnye indutsirovannye moduli nad tranzitivnymi algebrami Li kharakteristiki $p$”, Izv. AN SSSR. Ser. mat., 53:3 (1989), 557–589 | MR | Zbl

[9] Kuznetsov M. I., Mulyar O. A., “Avtomorfizmy algebr Frank”, Vestn. NNGU. Ser. mat., 2005, no. 1(3), 64–75

[10] Kuznetsov M. I., Mulyar O. A., Reshetnikov D. V., “Tory algebry Frank”, Vestn. NNGU. Ser. mat., 2006, no. 1(4), 49–58

[11] Ladilova A. A., “Filtrovannye deformatsii algebr Frank”, Izv. vyssh. uchebn. zaved. Matematika, 2009, no. 8, 53–56 | MR | Zbl

[12] Mulyar O. A., “Maksimalnye podalgebry algebr Frank”, Vestn. NNGU. Ser. mat., 2005, no. 1(3), 109–113

[13] Skryabin S. M., “Novye serii prostykh algebr Li kharakteristiki 3”, Mat. sb., 183:8 (1992), 3–22 | MR | Zbl

[14] Chan Nam Zung, “O dvukh klassakh prostykh algebr Li nad polem kharakteristiki 3”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1992, no. 2, 12–15 | MR | Zbl

[15] Brown G. E., “Properties of 29-dimensional simple Lie algebra of characteristic three”, Math. Ann., 261 (1982), 487–492 | DOI | MR | Zbl

[16] Brown G. E., “A class of simple Lie algebras of characteristic three”, Proc. Amer. Math. Soc., 107 (1989), 901–905 | DOI | MR | Zbl

[17] Brown G. E., “On the structure of some Lie algebras of Kuznetsov”, Michigan Math. J., 39:7 (1992), 85–90 | MR | Zbl

[18] Frank M. S., “A new simple Lie algebra of characteristic three”, Proc. Amer. Math. Soc., 38 (1973), 43–46 | DOI | MR | Zbl

[19] Kuznetsov M. I., Yakovlev V. A., “Elementary proof of Demushkin's theorem on tori in special Lie $p$-algebras of Cartan type”, Commun. Algebra, 25 (1997), 3979–3983 | DOI | MR | Zbl

[20] Kuznetsov M. I., Yakovlev V. A., “An elementary proof of Demushkin's theorem on tori in Hamiltonian Lie $p$-algebras”, Commun. Algebra, 27 (1999), 2779–2784 | DOI | MR | Zbl

[21] Skryabin S. M., “On the structure of the graded Lie algebra associated with a noncontractible filtration”, J. Algebra, 197 (1997), 178–230 | DOI | MR | Zbl

[22] Skryabin S. M., “Tori in the Melikian algebra”, J. Algebra, 243 (2001), 69–95 | DOI | MR | Zbl

[23] Strade H., Simple Lie Algebras over Fields of Positive Characteristic, v. I, De Gruyter Exp. Math., 38, Structure Theory, Walter de Gruyter, Berlin, 2004 | DOI | MR

[24] Weisfeiler B. Ju., “On subalgebras of simple Lie algebras of characteristic $p>0$”, Trans. Amer. Math. Soc., 286 (1984), 471–503 | MR | Zbl