Cyclic semirings with idempotent noncommutative addition
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 33-52
Voir la notice de l'article provenant de la source Math-Net.Ru
The article discusses the structure of cyclic semirings with noncommutative addition. In the infinite case, the addition is idempotent and is either left or right. Addition of a finite cyclic semirings can be either idempotent or nonidempotent. In the finite additively idempotent cyclic semiring, addition is reduced to the addition of cyclic subsemiring with commutative addition and absorbing element for multiplication and the addition of a cycle that is a finite semifield.
@article{FPM_2012_17_1_a2,
author = {E. M. Vechtomov and I. V. Lubyagina},
title = {Cyclic semirings with idempotent noncommutative addition},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {33--52},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a2/}
}
TY - JOUR AU - E. M. Vechtomov AU - I. V. Lubyagina TI - Cyclic semirings with idempotent noncommutative addition JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 33 EP - 52 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a2/ LA - ru ID - FPM_2012_17_1_a2 ER -
E. M. Vechtomov; I. V. Lubyagina. Cyclic semirings with idempotent noncommutative addition. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 33-52. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a2/