Regular $S$-acts with primitive normal and antiadditive theories
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 223-232
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, we investigate the commutative monoids over which the axiomatizable class of regular $S$-acts is primitive normal and antiadditive. We prove that the primitive normality of an axiomatizable class of regular $S$-acts over the commutative monoid $S$ is equivalent to the antiadditivity of this class and it is equivalent to the linearity of the order on a semigroup $R$ such that an $S$-act $_SR$ is a maximal (under the inclusion) regular subact of the $S$-act $_SS$.
@article{FPM_2012_17_1_a12,
author = {A. A. Stepanova and G. I. Baturin},
title = {Regular $S$-acts with primitive normal and antiadditive theories},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {223--232},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a12/}
}
TY - JOUR AU - A. A. Stepanova AU - G. I. Baturin TI - Regular $S$-acts with primitive normal and antiadditive theories JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 223 EP - 232 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a12/ LA - ru ID - FPM_2012_17_1_a12 ER -
A. A. Stepanova; G. I. Baturin. Regular $S$-acts with primitive normal and antiadditive theories. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 223-232. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a12/