Regular $S$-acts with primitive normal and antiadditive theories
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 223-232

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we investigate the commutative monoids over which the axiomatizable class of regular $S$-acts is primitive normal and antiadditive. We prove that the primitive normality of an axiomatizable class of regular $S$-acts over the commutative monoid $S$ is equivalent to the antiadditivity of this class and it is equivalent to the linearity of the order on a semigroup $R$ such that an $S$-act $_SR$ is a maximal (under the inclusion) regular subact of the $S$-act $_SS$.
@article{FPM_2012_17_1_a12,
     author = {A. A. Stepanova and G. I. Baturin},
     title = {Regular $S$-acts with primitive normal and antiadditive theories},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {223--232},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a12/}
}
TY  - JOUR
AU  - A. A. Stepanova
AU  - G. I. Baturin
TI  - Regular $S$-acts with primitive normal and antiadditive theories
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 223
EP  - 232
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a12/
LA  - ru
ID  - FPM_2012_17_1_a12
ER  - 
%0 Journal Article
%A A. A. Stepanova
%A G. I. Baturin
%T Regular $S$-acts with primitive normal and antiadditive theories
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 223-232
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a12/
%G ru
%F FPM_2012_17_1_a12
A. A. Stepanova; G. I. Baturin. Regular $S$-acts with primitive normal and antiadditive theories. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 223-232. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a12/