The algebraic and logical geometries of universal algebras (a~unified approach)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 189-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the congruences of free algebras as well as the concepts of a conditional term and an implicit operation, a unifying method for studying algebraic and logically definable subsets of universal algebras is suggested. An overview of the results of the author in this field of research is included.
@article{FPM_2012_17_1_a10,
     author = {A. G. Pinus},
     title = {The algebraic and logical geometries of universal algebras (a~unified approach)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {189--204},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a10/}
}
TY  - JOUR
AU  - A. G. Pinus
TI  - The algebraic and logical geometries of universal algebras (a~unified approach)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 189
EP  - 204
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a10/
LA  - ru
ID  - FPM_2012_17_1_a10
ER  - 
%0 Journal Article
%A A. G. Pinus
%T The algebraic and logical geometries of universal algebras (a~unified approach)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 189-204
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a10/
%G ru
%F FPM_2012_17_1_a10
A. G. Pinus. The algebraic and logical geometries of universal algebras (a~unified approach). Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 189-204. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a10/

[1] Daniyarova E. Yu., “Osnovy algebraicheskoi geometrii nad algebrami Li”, Vestnik OmGU, 2007, Spets. vypusk, 8–39

[2] Daniyarova E. Yu., Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li. III. Q-algebry i koordinatnye algebry algebraicheskikh mnozhestv, Preprint, Izd-vo OmGU, Omsk, 2005

[3] Daniyarova E. Yu., Kazachkov I. V., Remeslennikov V. N., “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li. I. U-algebry i universalnye klassy”, Fundament. i prikl. mat., 9:3 (2003), 37–63 | MR | Zbl

[4] Daniyarova E. Yu., Kazachkov I. V., Remeslennikov V. N., “Algebraicheskaya geometriya nad svobodnoi metabelevoi algebroi Li. II. Sluchai konechnogo polya”, Fundament. i prikl. mat., 9:3 (2003), 65–87 | MR | Zbl

[5] Daniyarova E. Yu., Remeslennikov V. N., “Ogranichennaya algebraicheskaya geometriya nad svobodnoi algebroi Li”, Algebra i logika, 44:3 (2005), 269–304 | MR | Zbl

[6] Pinus A. G., “Bulevy konstruktsii v universalnoi algebre”, Uspekhi mat. nauk, 47:4 (1992), 145–180 | MR | Zbl

[7] Pinus A. G., “Uslovnye termy i ikh primenenie v algebre i teorii vychislenii”, Uspekhi mat. nauk, 56:4 (2001), 35–72 | DOI | MR | Zbl

[8] Pinus A. G., Uslovnye termy i ikh prilozheniya v algebre i teorii vychislenii, Izd-vo NGTU, Novosibirsk, 2002

[9] Pinus A. G., “O $\exists^+$-uslovnykh mnogoobraziyakh, o $\exists^+$-psevdomnogoobraziyakh i neyavnykh operatsiyakh na nikh”, Algebra i teoriya modelei, 5, Izd-vo NGTU, Novosibirsk, 2005, 139–161 | MR

[10] Pinus A. G., “Pozitivno-uslovnye psevdomnogoobraziya i neyavnye operatsii na nikh”, Sib. mat. zhurn., 47:2 (2006), 372–382 | MR | Zbl

[11] Pinus A. G., “Geometricheskie shkaly mnogoobrazii i kvazitozhdestva”, Mat. trudy, 12:2 (2009), 160–169 | MR | Zbl

[12] Pinus A. G., “Neyavnye operatsii nad kategoriyami universalnykh algebr”, Sib. mat. zhurn., 50:1 (2009), 146–153 | MR | Zbl

[13] Pinus A. G., “O geometricheski blizkikh algebrakh”, Algebra i teoriya modelei, 8, Izd-vo NGTU, Novosibirsk, 2009, 85–95

[14] Pinus A. G., “Novye algebraicheskie invarianty dlya formulnykh podmnozhestv universalnykh algebr”, Algebra i logika, 50:2 (2011), 209–230 | MR | Zbl

[15] Pinus A. G., “O $\infty$-kvazimnogoobraziyakh”, Izv. vyssh. uchebn. zaved. Matematika, 2011, no. 8, 40–45 | MR | Zbl

[16] Pinus A. G., “Uslovnye geometricheskie shkaly diskriminatornykh mnogoobrazii”, Sib. mat. zhurn., 52:3 (2011), 650–654 | MR | Zbl

[17] Pinus A. G., “Neyavnaya algebraicheskaya geometriya na kategoriyakh universalnykh algebr”, Sib. mat. zhurn. (to appear)

[18] Pinus A. G., “O geometricheski polnykh mnogoobraziyakh”, Vestn. NGU (to appear)

[19] Pinus A. G., “O reshëtkakh algebraicheskikh podmnozhestv universalnykh algebr” (to appear)

[20] Plotkin B. I., “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248 | MR | Zbl

[21] Plotkin B. I., “Izotipnye algebry”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 15, 2011, 40–66 | DOI

[22] Baumslag G., Myasnikov A., Remeslennikov V., “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[23] Berzins A., Plotkin B., “Algebraic geometry in varieties of algebras with the given algebra of constans”, J. Math. Sci., 102:3 (2000), 4039–4070 | DOI | MR | Zbl

[24] Bludov V., Gusev D., “On geometrical equivalence of groups”, Algebra and Linear Optimization, Proc. Int. Sem. Devoted to the Ninetieth Birthday of S. N. Chernikov, Ekateringburg, 2002, 59–65

[25] Daniyarova E., Myasnikov A., Remeslennikov V., “Unification theorems in algebraic geometry”, Aspects of infinite groups, Algebra Discrete Math., 1, World Sci. Publ., 2008, 80–111 | DOI | MR | Zbl

[26] Daniyarova E., Myasnikov A., Remeslennikov V., Algebraic geometry over algebraic structures. Foundations, arXiv: 1002.3562v3[math.AG]

[27] Eilenberg S., Schutzenberger M. P., “On pseudovarieties”, Adv. Math., 19:1 (1976), 413–418 | DOI | MR | Zbl

[28] Göbel R., Shelah S., “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Amer. Math. Soc., 130:3 (2002), 673–674 | DOI | MR | Zbl

[29] Katsov Y., “On geometrically equivalent S-acts”, Int. J. Algebra Comput., 17:5–6 (2007), 1055–1065 | DOI | MR | Zbl

[30] Myasnikov A., Remeslennikov V., “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[31] Pinus A. G., Boolean Constructions in Universal Algebra, Kluwer Academic, Dordrecht, 1993 | MR | Zbl

[32] Plotkin B., “Varieties of algebras and algebraic varieties. Categories of algebraic varieties”, Sib. Adv. Math., 7:2 (1997), 64–97 | MR | Zbl

[33] Plotkin B., Seven lectures on the universal algebraic geometry, 2002, arXiv: math/0204245[math.GM]

[34] Plotkin B., “Algebras with the same algebraic geometry”, Tr. MIRAN im. V. A. Steklova, 242, 2003, 176–207 | MR | Zbl

[35] Plotkin B., “Geometrical equivalence, geometrical similarity and geometrical computability of algebras”, Zap. nauch. sem. Sankt-Peterburg. otd-niya Mat. in-ta im. V. A. Steklova RAN (POMI), 330, 2006, 201–222 | MR | Zbl

[36] Plotkin B., “Some results and problems related to universal algebraic geometry”, Int. J. Algebra Comput., 17:5–6 (2007), 1133–1164 | DOI | MR | Zbl

[37] Plotkin B., Plotkin E., Tsurkov A., “Geometrical equivalence of groups”, Commun. Algebra, 24 (1999), 4015–4025 | DOI | MR

[38] Plotkin B., Zitomirski G., “Some logical invariants of algebras and logical relations between algebras”, Algebra i analiz, 19:5 (2007), 214–245 | MR