Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2012_17_1_a0, author = {S. A. Abramov and D. E. Khmelnov}, title = {On singular points of solutions of linear differential systems with polynomial coefficients}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--21}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/} }
TY - JOUR AU - S. A. Abramov AU - D. E. Khmelnov TI - On singular points of solutions of linear differential systems with polynomial coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 3 EP - 21 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/ LA - ru ID - FPM_2012_17_1_a0 ER -
%0 Journal Article %A S. A. Abramov %A D. E. Khmelnov %T On singular points of solutions of linear differential systems with polynomial coefficients %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 3-21 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/ %G ru %F FPM_2012_17_1_a0
S. A. Abramov; D. E. Khmelnov. On singular points of solutions of linear differential systems with polynomial coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/
[1] Abramov S., “EG-eliminations”, J. Differ. Equ. Appl., 5 (1999), 393–433 | DOI | MR | Zbl
[2] Abramov S., Bronstein M., “On solutions of linear functional systems”, Proc. of the 2001 Int. Symp. on Symbolic and Algebraic Computation (London, Ontario, Canada, July 22–25, 2001), ed. B. Mourrain, ACM Press, New York, 2001, 1–6 | DOI | MR
[3] Abramov S. A., Bronstein M., Linear algebra for skew-polynomial matrices, Rapport de Recherche INRIA, RR-4420, March 2002
[4] Abramov S., Bronstein M., Khmelnov D., “Regularization of linear recurrence systems”, Trans. A. M. Liapunov Inst., 4 (2003), 158–171
[5] Abramov S., Bronstein M., Khmelnov D., “On regular and logarithmic solutions of ordinary linear differential systems”, Computer Algebra in Scientific Computing, Ann. Int. Workshop in Computer Algebra in Scientific Computing (Kalamata, Greece, 12–16 September 2005), Lect. Notes Comput. Sci., 3718, Springer, Berlin, 2005, 1–12 | DOI | MR | Zbl
[6] Abramov S., Khmelnov D., “Desingularization of leading matrices of systems of linear ordinary differential equations with polynomial coefficients”, Int. Conf. “Differential Equations and Related Topics”, Dedicated to I. G. Petrovskii (Moscow, MSU, May 30 – June 4, 2011), Book of Abstracts, 2012, 5 | Zbl
[7] Barkatou M. A., “On rational solutions of systems of linear differential equations”, J. Symbol. Comput., 28 (1999), 547–567 | DOI | MR | Zbl
[8] Barkatou M. A., El Bacha C., Cluzeau T., “Simple forms of higher-order linear differential systems and their applications in computing regular solutions”, J. Symbol. Comput., 46 (2011), 633–658 | DOI | MR | Zbl
[9] Barkatou M. A., El Bacha C., Pflügel E., “Simultaneously row- and column-reduced higher-order linear differential systems”, Symbolic and Algebraic Computation, Int. Symp., ISSAC 2010 (Munich, Germany, July 25–28, 2010), Proceedings, ed. W. Koepf, ACM Press, New York, 2010, 45–52 | MR
[10] Beckermann B., Cheng H., Labahn G., “Fraction-free row reduction of matrices of skew polynomials”, Proc. of the 2002 Int. Symp. on Symbolic and Algebraic Computation, ed. T. Mora, ACM Press, New York, 2002, 8–15 | DOI | MR | Zbl
[11] Beckermann B., Cheng H., Labahn G., “Fraction-free row reduction of matrices of Ore polynomials”, J. Symbol. Comput., 41 (2006), 513–543 | DOI | MR | Zbl
[12] Davies P., Cheng H., Labahn G., MICA 2008, A Conf. in Honour of Keith Geddes' 60th Birthday (Stonehaven Bay, Trinidad and Tobago, 1–3 May 2008), 2008
[13] Maple online help http://www.maplesoft.com/support/help/
[14] Quéré M. P., Villard G., “An algorithm for the reduction of linear DAE”, Int. Symp. on Symbolic and Algebraic Computation, ISSAC' 95 (Montreal, Canada, juillet 1995), ACM Press, New York, 1995, 223–231 | Zbl