On singular points of solutions of linear differential systems with polynomial coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 3-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider systems of linear ordinary differential equations containing $m$ unknown functions of a single variable $x$. The coefficients of the systems are polynomials over a field $k$ of characteristic $0$. Each of the systems consists of $m$ equations independent over $k[x,d/dx]$. The equations are of arbitrary orders. We propose a computer algebra algorithm that, given a system $S$ of this form, constructs a polynomial $d(x)\in k[x]\setminus\{0\}$ such that if $S$ possesses a solution in $\overline k((x-\alpha))^m$ for some $\alpha\in\overline k$ and a component of this solution has a nonzero polar part, then $d(\alpha)=0$. In the case where $k\subseteq\mathbb C$ and $S$ possesses an analytic solution having a singularity of an arbitrary type (not necessarily a pole) at $\alpha$, the equality $d(\alpha)=0$ is also satisfied.
@article{FPM_2012_17_1_a0,
author = {S. A. Abramov and D. E. Khmelnov},
title = {On singular points of solutions of linear differential systems with polynomial coefficients},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--21},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/}
}
TY - JOUR AU - S. A. Abramov AU - D. E. Khmelnov TI - On singular points of solutions of linear differential systems with polynomial coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2012 SP - 3 EP - 21 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/ LA - ru ID - FPM_2012_17_1_a0 ER -
%0 Journal Article %A S. A. Abramov %A D. E. Khmelnov %T On singular points of solutions of linear differential systems with polynomial coefficients %J Fundamentalʹnaâ i prikladnaâ matematika %D 2012 %P 3-21 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/ %G ru %F FPM_2012_17_1_a0
S. A. Abramov; D. E. Khmelnov. On singular points of solutions of linear differential systems with polynomial coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/