On singular points of solutions of linear differential systems with polynomial coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of linear ordinary differential equations containing $m$ unknown functions of a single variable $x$. The coefficients of the systems are polynomials over a field $k$ of characteristic $0$. Each of the systems consists of $m$ equations independent over $k[x,d/dx]$. The equations are of arbitrary orders. We propose a computer algebra algorithm that, given a system $S$ of this form, constructs a polynomial $d(x)\in k[x]\setminus\{0\}$ such that if $S$ possesses a solution in $\overline k((x-\alpha))^m$ for some $\alpha\in\overline k$ and a component of this solution has a nonzero polar part, then $d(\alpha)=0$. In the case where $k\subseteq\mathbb C$ and $S$ possesses an analytic solution having a singularity of an arbitrary type (not necessarily a pole) at $\alpha$, the equality $d(\alpha)=0$ is also satisfied.
@article{FPM_2012_17_1_a0,
     author = {S. A. Abramov and D. E. Khmelnov},
     title = {On singular points of solutions of linear differential systems with polynomial coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/}
}
TY  - JOUR
AU  - S. A. Abramov
AU  - D. E. Khmelnov
TI  - On singular points of solutions of linear differential systems with polynomial coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2012
SP  - 3
EP  - 21
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/
LA  - ru
ID  - FPM_2012_17_1_a0
ER  - 
%0 Journal Article
%A S. A. Abramov
%A D. E. Khmelnov
%T On singular points of solutions of linear differential systems with polynomial coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2012
%P 3-21
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/
%G ru
%F FPM_2012_17_1_a0
S. A. Abramov; D. E. Khmelnov. On singular points of solutions of linear differential systems with polynomial coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 17 (2012) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/FPM_2012_17_1_a0/