Amalgamated products of groups: measures of random normal forms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 189-221
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G=\mathop{A\ast B}\limits_C$ be an amalgamated product of finite rank free groups $A,B$, and $C$. We introduce atomic measures and corresponding asymptotic densities on a set of normal forms of elements in $G$. We also define two strata of normal forms: the first one consists of regular (or stable) normal forms, and the second stratum is formed by singular (or unstable) normal forms. In a series of previous works about classical algorithmic problems, it was shown that standard algorithms work fast on elements of the first stratum and nothing is known about their work on the second stratum. In this paper, we give probabilistic and asymptotic estimates of these strata.
@article{FPM_2010_16_8_a9,
author = {A. G. Myasnikov and V. N. Remeslennikov and E. V. Frenkel},
title = {Amalgamated products of groups: measures of random normal forms},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {189--221},
publisher = {mathdoc},
volume = {16},
number = {8},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a9/}
}
TY - JOUR AU - A. G. Myasnikov AU - V. N. Remeslennikov AU - E. V. Frenkel TI - Amalgamated products of groups: measures of random normal forms JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 189 EP - 221 VL - 16 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a9/ LA - ru ID - FPM_2010_16_8_a9 ER -
%0 Journal Article %A A. G. Myasnikov %A V. N. Remeslennikov %A E. V. Frenkel %T Amalgamated products of groups: measures of random normal forms %J Fundamentalʹnaâ i prikladnaâ matematika %D 2010 %P 189-221 %V 16 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a9/ %G ru %F FPM_2010_16_8_a9
A. G. Myasnikov; V. N. Remeslennikov; E. V. Frenkel. Amalgamated products of groups: measures of random normal forms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 189-221. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a9/