Characterization of Radon integrals as linear functionals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 87-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of characterization of integrals as linear functionals is considered in the paper. It takes the origin in the well-known result of F. Riesz (1909) on integral representation of bounded linear functionals by Riemann–Stiltjes integrals on a segment and is directly connected with the famous theorem of J. Radon (1913) on integral representation of bounded linear functionals by Lebesgue integrals on a compact in $\mathbb R^n$. After works of J. Radon, M. Fréchet, and F. Hausdorff, the problem of characterization of integrals as linear functionals has been concretized as the problem of extension of Radon's theorem from $\mathbb R^n$ to more general topological spaces with Radon measures. This problem turned out difficult, and its solution has a long and abundant history. Therefore, it may be naturally called the Riesz–Radon–Fréchet problem of characterization of integrals. The important stages of its solving are connected with such eminent mathematicians as S. Banach (1937–38), S. Saks (1937-38), S. Kakutani (1941), P. Halmos (1950), E. Hewitt (1952), R. E. Edwards (1953), Yu. V. Prokhorov (1956), N. Bourbaki (1969), H. König (1995), V. K. Zakharov and A. V. Mikhalev (1997), et al. Essential ideas and technical tools were worked out by A. D. Alexandrov (1940–43), M. N. Stone (1948–49), D. H. Fremlin (1974), et al. The article is devoted to the modern stage of solving this problem connected with the works of the authors (1997–2009). The solution of the problem is presented in the form of the parametric theorems on characterization of integrals. These theorems immediately imply characterization theorems of above-mentioned authors.
@article{FPM_2010_16_8_a7,
     author = {V. K. Zakharov and A. V. Mikhalev and T. V. Rodionov},
     title = {Characterization of {Radon} integrals as linear functionals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {87--161},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
AU  - T. V. Rodionov
TI  - Characterization of Radon integrals as linear functionals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 87
EP  - 161
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/
LA  - ru
ID  - FPM_2010_16_8_a7
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%A T. V. Rodionov
%T Characterization of Radon integrals as linear functionals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 87-161
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/
%G ru
%F FPM_2010_16_8_a7
V. K. Zakharov; A. V. Mikhalev; T. V. Rodionov. Characterization of Radon integrals as linear functionals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 87-161. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/

[1] Bogachëv V.I., Osnovy teorii mery, R C Dynamics, Moskva–Izhevsk, 2006

[2] Burbaki N., Integrirovanie. Mery. Integrirovanie mer, Nauka, M., 1967 | MR

[3] Burbaki N., Integrirovanie. Mery na kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977

[4] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961 | MR | Zbl

[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd. inostr. lit., M., 1962

[6] Zakharov V. K., “Svyaz mezhdu polnym koltsom chastnykh koltsa nepreryvnykh funktsii, regulyarnym popolneniem i rasshireniyami Khausdorfa–Serpinskogo”, Uspekhi mat. nauk, 45:6 (1990), 133–134 | MR | Zbl

[7] Zakharov V. K., “Proobraz Gordona prostranstva Aleksandrova kak okruzhaemoe nakrytie”, Izv. RAN. Ser. mat., 56:2 (1992), 427–448 | MR | Zbl

[8] Zakharov VK., “Rasshirenie Arensa koltsa nepreryvnykh funktsii”, Algebra i analiz, 4:1 (1992), 135–153 | MR | Zbl

[9] Zakharov V. K., “Problema kharakterizatsii radonovskikh integralov”, Dokl. RAN, 385:6 (2002), 735–737 | MR | Zbl

[10] Zakharov V. K., “Problema Rissa–Radona kharakterizatsii integralov i slabaya kompaktnost radonovskikh mer”, Tr. Mat. in-ta im. V. A. Steklova RAN, 248, 2005, 106–116 | MR | Zbl

[11] Zakharov V. K., “Novye klassy funktsii, svyazannye s obschimi semeistvami mnozhestv”, Dokl. RAN, 407:2 (2006), 167–171 | MR

[12] Zakharov V. K., Mikhalëv A. V., “Integralnoe predstavlenie dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Fundament. i prikl. mat., 3:4 (1997), 1135–1172 | MR | Zbl

[13] Zakharov V. K., Mikhalëv A. V., “Problema Radona dlya regulyarnykh mer v proizvolnom khausdorfovom prostranstve”, Fundament. i prikl. mat., 3:3 (1997), 801–808 | MR | Zbl

[14] Zakharov V. K., Mikhalëv A. V., “Problema integralnogo predstavleniya dlya radonovskikh mer na proizvolnom khausdorfovom prostranstve”, Dokl. RAN, 360:1 (1998), 13–15 | MR | Zbl

[15] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva”, Izv. RAN. Ser. mat., 63:5 (1999), 37–82 | DOI | MR | Zbl

[16] Zakharov V. K., Mikhalëv A. V., “Svyaz mezhdu integralnymi radonovskimi predstavleniyami dlya lokalno kompaktnogo i khausdorfova prostranstv”, Fundament. i prikl. mat., 7:1 (2001), 33–46 | MR | Zbl

[17] Zakharov V. K., Mikhalëv A. V., “Problema obschego radonovskogo predstavleniya dlya proizvolnogo khausdorfova prostranstva. II”, Izv. RAN. Ser. mat., 66:6 (2002), 3–18 | DOI | MR | Zbl

[18] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii radonovskikh integralov: ogranichennye mery; polozhitelnye mery; bimery; obschie radonovskie mery”, Sovremennye problemy matematiki, mekhaniki i ikh prilozhenii, Materialy mezhdunar. konf., posv. 70-letiyu rektora MGU akademika V. A. Sadovnichego, Universitetskaya kniga, M., 2009, 91–92

[19] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema Rissa–Radona–Freshe kharakterizatsii integralov”, Uspekhi mat. nauk, 65:4 (2010), 153–178 | DOI | MR | Zbl

[20] Zakharov V. K., Mikhalëv A. V., Rodionov T. V., “Problema kharakterizatsii obschikh radonovskikh integralov”, Dokl. RAN, 433:6 (2010), 731–735 | MR | Zbl

[21] Zakharov V. K., Rodionov T. V., “Klass ravnomernykh funktsii i ego sootnoshenie s klassom izmerimykh funktsii”, Mat. zametki, 84:6 (2008), 809–824 | DOI | MR | Zbl

[22] Zakharov V. K., Rodionov T. V., “Klassifikatsiya borelevskikh mnozhestv i funktsii na proizvolnom prostranstve”, Mat. sb., 199:6 (2008), 49–84 | DOI | MR | Zbl

[23] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatnostei i eë primeneniya, 1:1 (1956), 177–238 | MR | Zbl

[24] Khausdorf F., Teoriya mnozhestv, URSS, M., 2004

[25] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[26] Alexandroff A. D., “Additive set-functions on abstract spaces. I”, Mat. sb., 8(50):2 (1940), 307–348 ; “II”, Мат. сб., 9(51):3 (1941), 563–628 ; “III”, Мат. сб., 13(55):2–3 (1943), 169–238 | MR | Zbl | MR | Zbl | MR | Zbl

[27] Bourbaki N., Intégration, Chap. IX, Hermann, Paris, 1969 | MR

[28] Dinculianu N., Vector Measures, Oxford Univ. Press, London; Pergamon, New York, 1967

[29] Edwards R. E., “A theory of Radon measures on locally compact spaces”, Acta Math., 89 (1953), 133–164 | DOI | MR | Zbl

[30] Fréchet M., “Sur les opérations linéaires”, Trans. Amer. Math. Soc., 5 (1904), 493–499 | DOI | MR | Zbl

[31] Fréchet M., “Sur l'integrale d'une fonctionnelle étendue á un ensemble abstrait”, Bull. Soc. Math. Fr., 18 (1915), 248–265 | MR

[32] Fremlin D. H., Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, Cambridge, 1974 | MR | Zbl

[33] Fremlin D. H., Measure Theory, v. 1–5, Univ. of Essex, Colchester, 2003–2008

[34] Hadamard J., “Sur les opérations fonctionelles”, C. R. Acad. Sci. Paris, 136 (1903), 351–354 | Zbl

[35] Halmos P. R., Measure Theory, Van Nostrand, Princeton, 1950 | MR | Zbl

[36] Hausdorff F., Grundzüge der Mengenlehre, Vien–Leipzig, 1914 | Zbl

[37] Hausdorff F., “Über halbstetige Functionen und deren Verallgemeinerung”, Math. Z., 4 (1915), 292–309 | MR

[38] Hewitt E., “Integration on locally compact spaces. I”, Univ. of Washington Publ. Math., 3 (1952), 71–75 | MR

[39] Hewitt E., Stromberg K., Real and Abstract Analysis, Springer, Berlin, 1965 | MR | Zbl

[40] Jacobs K., Measure and Integral, Academic Press, New York, 1978 | MR | Zbl

[41] Jech T., Set Theory, Springer Monographs Math., Springer, Berlin, 2002 | MR

[42] Kakutani S., “Concrete representation of abstract (M)-spaces”, Ann. Math. (2), 42 (1941), 994–1024 | DOI | MR | Zbl

[43] König H., “The Danielle–Stone–Riesz representation theorem”, Operator Theory: Advances and Appl., 75 (1995), 191–222 | MR

[44] König H., Measure and Integration, Springer, Berlin, 1997 | MR

[45] König H., “On the inner Daniell–Stone and Riesz representation theorems”, Doc. Math., 5 (2000), 301–315 | MR | Zbl

[46] Radon J., “Theorie und Anwendangen der absolut additiven Mengenfunktionen”, Sitzungsber. Math.-Natur. Kl. Akad. Wiss. Wien, 122 (1913), 1295–1438 | Zbl

[47] Riesz F., “Sur les opérations fonctionelles linéaires”, C. R. Acad. Sci. Paris, 149 (1909), 974–977

[48] Saks S., Theory of the Integral, PWN, Warszawa, 1937

[49] Saks S., “Integration in abstract metric spaces”, Duke Math. J., 4 (1938), 408–411 | DOI | MR | Zbl

[50] Semadeni Z., Banach Spaces of Continuous Functions, PWN, Warszawa, 1971 | Zbl

[51] Sierpiński W., “Sur les fonctions développables en séries absolument convergentes de fonctions continues”, Fund. Math., 2 (1921), 15–27 | Zbl

[52] Stone M. N., “Notes on integration. I”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 336–342 ; “II”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 447–455 ; “III”, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 483–490 ; “IV”, Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 50–58 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[53] Topsoe F., Topology and Measure, Lect. Notes Math., 133, Springer, Berlin, 1970 | MR | Zbl

[54] Topsoe F., “Further results on integral representations”, Studia Math., 55 (1976), 239–245 | MR | Zbl

[55] Zakharov V.K., “Alexandrovian cover and Sierpińskian extension”, Studia Sci. Math. Hungar., 24:2–3 (1989), 93–117 | MR | Zbl

[56] Zakharov V. K., Mikhalev A. V., “Riesz–Radon problem of characterisation of Radon integrals”, Kolmogorov and Contemporary Mathematics, Marcel Dekker, New York, 2003, 260–261