Characterization of Radon integrals as linear functionals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 87-161

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of characterization of integrals as linear functionals is considered in the paper. It takes the origin in the well-known result of F. Riesz (1909) on integral representation of bounded linear functionals by Riemann–Stiltjes integrals on a segment and is directly connected with the famous theorem of J. Radon (1913) on integral representation of bounded linear functionals by Lebesgue integrals on a compact in $\mathbb R^n$. After works of J. Radon, M. Fréchet, and F. Hausdorff, the problem of characterization of integrals as linear functionals has been concretized as the problem of extension of Radon's theorem from $\mathbb R^n$ to more general topological spaces with Radon measures. This problem turned out difficult, and its solution has a long and abundant history. Therefore, it may be naturally called the Riesz–Radon–Fréchet problem of characterization of integrals. The important stages of its solving are connected with such eminent mathematicians as S. Banach (1937–38), S. Saks (1937-38), S. Kakutani (1941), P. Halmos (1950), E. Hewitt (1952), R. E. Edwards (1953), Yu. V. Prokhorov (1956), N. Bourbaki (1969), H. König (1995), V. K. Zakharov and A. V. Mikhalev (1997), et al. Essential ideas and technical tools were worked out by A. D. Alexandrov (1940–43), M. N. Stone (1948–49), D. H. Fremlin (1974), et al. The article is devoted to the modern stage of solving this problem connected with the works of the authors (1997–2009). The solution of the problem is presented in the form of the parametric theorems on characterization of integrals. These theorems immediately imply characterization theorems of above-mentioned authors.
@article{FPM_2010_16_8_a7,
     author = {V. K. Zakharov and A. V. Mikhalev and T. V. Rodionov},
     title = {Characterization of {Radon} integrals as linear functionals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {87--161},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
AU  - T. V. Rodionov
TI  - Characterization of Radon integrals as linear functionals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 87
EP  - 161
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/
LA  - ru
ID  - FPM_2010_16_8_a7
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%A T. V. Rodionov
%T Characterization of Radon integrals as linear functionals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 87-161
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/
%G ru
%F FPM_2010_16_8_a7
V. K. Zakharov; A. V. Mikhalev; T. V. Rodionov. Characterization of Radon integrals as linear functionals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 87-161. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a7/