Flat modules and the behavior of a~standard basis relative to an extension of the ground ring
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 69-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The property of a generating set of a polynomial ideal or of an ideal of a free associative algebra over a commutative ring to be its Gröbner basis is kept by a flat (but not any) extension of the ground ring. The converse is proved in the broader context of standard bases for filtered modules.
@article{FPM_2010_16_8_a5,
     author = {E. S. Golod},
     title = {Flat modules and the behavior of a~standard basis relative to an extension of the ground ring},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a5/}
}
TY  - JOUR
AU  - E. S. Golod
TI  - Flat modules and the behavior of a~standard basis relative to an extension of the ground ring
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 69
EP  - 72
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a5/
LA  - ru
ID  - FPM_2010_16_8_a5
ER  - 
%0 Journal Article
%A E. S. Golod
%T Flat modules and the behavior of a~standard basis relative to an extension of the ground ring
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 69-72
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a5/
%G ru
%F FPM_2010_16_8_a5
E. S. Golod. Flat modules and the behavior of a~standard basis relative to an extension of the ground ring. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 69-72. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a5/

[1] Golod E. S., “Distributivnost, binarnye sootnosheniya i standartnye bazisy”, Fundament. i prikl. mat., 16:3 (2010), 127–134 | MR

[2] Golod E. S., “Standard bases and homology”, Algebra: Some Current Trends, Proc. of the 5th Nacional School in Algebra (Varna, Bulgaria, Sept. 24 – Oct. 4, 1986), Lect. Notes Math., 1352, eds. L. L. Avramov, K. B. Tchakerian, Springer, Berlin, 1988, 105–110 | MR