Elementary equivalence of incidence rings over semi-perfect rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 37-48
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove that if two incidence rings constructed by the same semiperfect ring and some two quasi-ordered sets are elementarily equivalent, then the given sets are elementarily equivalent.
@article{FPM_2010_16_8_a3,
author = {E. I. Bunina and A. S. Dobrokhotova-Maykova},
title = {Elementary equivalence of incidence rings over semi-perfect rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {37--48},
publisher = {mathdoc},
volume = {16},
number = {8},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/}
}
TY - JOUR AU - E. I. Bunina AU - A. S. Dobrokhotova-Maykova TI - Elementary equivalence of incidence rings over semi-perfect rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 37 EP - 48 VL - 16 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/ LA - ru ID - FPM_2010_16_8_a3 ER -
E. I. Bunina; A. S. Dobrokhotova-Maykova. Elementary equivalence of incidence rings over semi-perfect rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 37-48. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/