Elementary equivalence of incidence rings over semi-perfect rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 37-48
In this paper, we prove that if two incidence rings constructed by the same semiperfect ring and some two quasi-ordered sets are elementarily equivalent, then the given sets are elementarily equivalent.
@article{FPM_2010_16_8_a3,
author = {E. I. Bunina and A. S. Dobrokhotova-Maykova},
title = {Elementary equivalence of incidence rings over semi-perfect rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {37--48},
year = {2010},
volume = {16},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/}
}
TY - JOUR AU - E. I. Bunina AU - A. S. Dobrokhotova-Maykova TI - Elementary equivalence of incidence rings over semi-perfect rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 37 EP - 48 VL - 16 IS - 8 UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/ LA - ru ID - FPM_2010_16_8_a3 ER -
E. I. Bunina; A. S. Dobrokhotova-Maykova. Elementary equivalence of incidence rings over semi-perfect rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 37-48. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/
[1] Bunina E. I., Dobrokhotova-Maikova A. S., “Elementarnaya ekvivalentnost obobschënnykh kolets intsidentnosti”, Fundament. prikl. mat., 14:7 (2008), 37–42 | MR
[2] Keisler G., Chen Ch., Teoriya modelei, Mir, M., 1977 | MR
[3] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl
[4] Shmatkov V. D., Izomorfizmy i avtomorfizmy kolets i algebr intsidentnosti, Dis. $\dots$ kand. fiz.-mat. nauk, M., 1994
[5] Voss E. R., “On the isomorphism problem for incidence rings”, Illinois J. Math., 24 (1980), 624–638 | MR | Zbl