Elementary equivalence of incidence rings over semi-perfect rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that if two incidence rings constructed by the same semiperfect ring and some two quasi-ordered sets are elementarily equivalent, then the given sets are elementarily equivalent.
@article{FPM_2010_16_8_a3,
     author = {E. I. Bunina and A. S. Dobrokhotova-Maykova},
     title = {Elementary equivalence of incidence rings over semi-perfect rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/}
}
TY  - JOUR
AU  - E. I. Bunina
AU  - A. S. Dobrokhotova-Maykova
TI  - Elementary equivalence of incidence rings over semi-perfect rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 37
EP  - 48
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/
LA  - ru
ID  - FPM_2010_16_8_a3
ER  - 
%0 Journal Article
%A E. I. Bunina
%A A. S. Dobrokhotova-Maykova
%T Elementary equivalence of incidence rings over semi-perfect rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 37-48
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/
%G ru
%F FPM_2010_16_8_a3
E. I. Bunina; A. S. Dobrokhotova-Maykova. Elementary equivalence of incidence rings over semi-perfect rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 37-48. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a3/

[1] Bunina E. I., Dobrokhotova-Maikova A. S., “Elementarnaya ekvivalentnost obobschënnykh kolets intsidentnosti”, Fundament. prikl. mat., 14:7 (2008), 37–42 | MR

[2] Keisler G., Chen Ch., Teoriya modelei, Mir, M., 1977 | MR

[3] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[4] Shmatkov V. D., Izomorfizmy i avtomorfizmy kolets i algebr intsidentnosti, Dis. $\dots$ kand. fiz.-mat. nauk, M., 1994

[5] Voss E. R., “On the isomorphism problem for incidence rings”, Illinois J. Math., 24 (1980), 624–638 | MR | Zbl