Local definitions of formations of finite groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 229-244
Voir la notice de l'article provenant de la source Math-Net.Ru
A problem of constructing local definitions for formations of finite groups is discussed in the article. The author analyzes relations between local definitions of various types. A new proof of the existence of an $\omega$-composition satellite of an $\omega$-solubly saturated formation is obtained. It is proved that if a nonempty formation of finite groups is $\mathfrak X$-local by Förster, then it has an $\mathfrak X$-composition satellite.
@article{FPM_2010_16_8_a11,
author = {L. A. Shemetkov},
title = {Local definitions of formations of finite groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {229--244},
publisher = {mathdoc},
volume = {16},
number = {8},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a11/}
}
L. A. Shemetkov. Local definitions of formations of finite groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 229-244. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a11/