Distributive skew Laurent polynomial rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 223-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe skew Laurent polynomial rings that are right distributive.
@article{FPM_2010_16_8_a10,
     author = {A. A. Tuganbaev},
     title = {Distributive skew {Laurent} polynomial rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {223--227},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a10/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Distributive skew Laurent polynomial rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 223
EP  - 227
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a10/
LA  - ru
ID  - FPM_2010_16_8_a10
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Distributive skew Laurent polynomial rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 223-227
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a10/
%G ru
%F FPM_2010_16_8_a10
A. A. Tuganbaev. Distributive skew Laurent polynomial rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 223-227. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a10/

[1] Leroy A., Matczuk J., Puczylowski E. R., “Quasi-duo skew polynomial rings”, J. Pure Appl. Algebra, 212:8 (2008), 1951–1959 | DOI | MR | Zbl

[2] Stephenson W., “Modules whose lattice of submodules is distributive”, Proc. London Math. Soc., 28:2 (1974), 291–310 | DOI | MR | Zbl

[3] Tuganbaev A. A., Semidistributive Rings and Modules, Kluwer Academic, Dordrecht, 1998 | MR | Zbl