Properties of finite unrefinable chains of ring topologies
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 5-16
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R(+,\cdot)$ be a nilpotent ring and $(\mathfrak M,)$ be the lattice of all ring topologies on $R(+,\cdot)$ or the lattice of all such ring topologies on $R(+,\cdot)$ in each of which the ring $R$ possesses a basis of neighborhoods of zero consisting of subgroups. Let $\tau$ and $\tau'$ be ring topologies from $\mathfrak M$ such that $\tau=\tau_0\prec_\mathfrak M\tau_1\prec_\mathfrak M\dots\prec_\mathfrak M\tau_n=\tau'$. Then $k\leq n$ for every chain $\tau=\tau'_0\tau'_1\dots\tau'_k=\tau'$ of topologies from $\mathfrak M$, and also $n=k$ if and only if $\tau'_i\prec_\mathfrak M\tau'_{i+1}$ for all $0\leq i$.
@article{FPM_2010_16_8_a0,
author = {V. I. Arnautov},
title = {Properties of finite unrefinable chains of ring topologies},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {5--16},
year = {2010},
volume = {16},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a0/}
}
V. I. Arnautov. Properties of finite unrefinable chains of ring topologies. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 8, pp. 5-16. http://geodesic.mathdoc.fr/item/FPM_2010_16_8_a0/
[1] Birkgof G., Teoriya reshëtok, Nauka, M., 1984 | MR
[2] Grettser G., Obschaya teoriya reshëtok, Mir, M., 1982 | MR
[3] Kurosh A. G., Lektsii po obschei algebre, M., 2007
[4] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the Theory of Topological Rings and Modules., Marsel Dekker, New York, 1996 | MR | Zbl
[5] Arnautov V. I., Topala A. G., “An example of ring with nonmodular lattice of ring topologies”, Bul. Acad. Şti. Rep. Moldova, Mat., 1998, no. 2(27), 130–131 | MR | Zbl
[6] Smarda B., “The lattice of topologies of topological $l$-group”, Czech. Math. J., 26:101 (1976), 128–136 | MR | Zbl