Approximation of Boolean functions to Schaefer's classes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 197-204
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an algorithm for transferring Boolean functions to function classes for which the generalized satisfiability problem is solvable in polynomial time (Schaefer's classes). For the case where an initial function is represented as a truth-table, it is proved that the complexity of the algorithm is $l^2+l\log_2^2(l)$, where $l$ is the input length.
@article{FPM_2010_16_7_a8,
author = {E. A. Potseluevskaya},
title = {Approximation of {Boolean} functions to {Schaefer's} classes},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {197--204},
year = {2010},
volume = {16},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a8/}
}
E. A. Potseluevskaya. Approximation of Boolean functions to Schaefer's classes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 197-204. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a8/
[1] Gizunov S. A., Nosov V. A., “Slozhnost raspoznavaniya klassov Shefera”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1996, no. 4, 7–12 | MR | Zbl
[2] Schaefer T. J., “The complexity of satisfiability problems”, Proc. of the 10th Symp. on Theory of Computing, STOC'78 (San Diego, California, USA, 1978), ACM Press, New York, 1978, 216–226 | MR | Zbl