Idempotent functors and localizations in categories of modules and Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 75-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper contains various results on idempotent functors and localizations in categories of modules and Abelian groups.
@article{FPM_2010_16_7_a5,
     author = {P. A. Krylov and A. A. Tuganbaev},
     title = {Idempotent functors and localizations in categories of modules and {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--159},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a5/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - A. A. Tuganbaev
TI  - Idempotent functors and localizations in categories of modules and Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 75
EP  - 159
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a5/
LA  - ru
ID  - FPM_2010_16_7_a5
ER  - 
%0 Journal Article
%A P. A. Krylov
%A A. A. Tuganbaev
%T Idempotent functors and localizations in categories of modules and Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 75-159
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a5/
%G ru
%F FPM_2010_16_7_a5
P. A. Krylov; A. A. Tuganbaev. Idempotent functors and localizations in categories of modules and Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 75-159. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a5/

[1] Zinovev E. G., “csp-koltsa kak obobschenie kolets psevdoratsionalnykh chisel”, Fundament. i prikl. mat., 13:3 (2007), 35–38 | MR | Zbl

[2] Zinovev E. G., “In'ektivnye i delimye moduli nad csp-koltsami”, Vestn. Tomsk. gos. un-ta, 2007, no. 299, 96–97

[3] Kashu A. I., Radikaly i krucheniya v modulyakh, Shtiintsa, Kishinëv, 1983 | MR

[4] Krylov P. A., “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fundament. i prikl. mat., 6:3 (2000), 793–812 | MR | Zbl

[5] Krylov P. A., “Affinnye gruppy modulei i ikh avtomorfizmy”, Algebra i logika, 40:1 (2001), 60–82 | MR | Zbl

[6] Krylov P. A., “Nasledstvennye koltsa endomorfizmov smeshannykh abelevykh grupp”, Sib. mat. zhurn., 43:1 (2002), 108–119 | MR | Zbl

[7] Krylov P. A., “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy”, Algebra i logika, 43:1 (2004), 60–76 | MR | Zbl

[8] Krylov P. A., Klassen E. D., “Tsentr koltsa endomorfizmov rasscheplyayuscheisya smeshannoi abelevoi gruppy”, Sib. mat. zhurn., 40:5 (1999), 1074–1085 | MR | Zbl

[9] Krylov P. A., Pakhomova E. G., “Abelevy gruppy i regulyarnye moduli”, Mat. zametki, 69:3 (2001), 402–411 | DOI | MR | Zbl

[10] Timoshenko E. A., “T-radikaly i E-radikaly v kategorii modulei”, Sib. mat. zhurn., 45:1 (2004), 201–210 | MR | Zbl

[11] Tsarëv A. V., “Moduli nad koltsom psevdoratsionalnykh chisel i faktorno delimye gruppy”, Algebra i analiz, 18:4 (2006), 198–214 | MR | Zbl

[12] Tsarëv A. V., “Proektivnye i obrazuyuschie moduli nad koltsom psevdoratsionalnykh chisel”, Mat. zametki, 80:3 (2006), 437–448 | DOI | MR | Zbl

[13] Tsarëv A. V., “Nekotorye morfizmy modulei nad koltsom psevdoratsionalnykh chisel”, Sib. mat. zhurn., 49:4 (2008), 945–953 | MR | Zbl

[14] Tsarëv A. V., “Servantnye podkoltsa kolets $\mathbb Z_\chi$”, Mat. sb., 200:10 (2009), 123–150 | DOI | MR | Zbl

[15] Adámek J., Rosický J., Locally Presentable and Accessible Categories, London Math. Soc. Lect. Note Ser., 189, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[16] Adams J. F., Localization and Completion, Univ. of Chicago, Chicago, 1975 | MR

[17] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer, New York, 1974 | MR | Zbl

[18] Bousfield A. K., “The localization of spaces with respect to homology”, Topology, 14 (1975), 133–150 | DOI | MR | Zbl

[19] Bousfield A. K., “Construction of factorization systems in categories”, J. Pure Appl. Algebra, 9 (1977), 207–220 | DOI | MR | Zbl

[20] Bousfield A. K., “Homotopical localizations of spaces”, Amer. J. Math., 119 (1997), 1321–1354 | DOI | MR | Zbl

[21] Bousfield A. K., Kan D. M., Homotopy Limits, Completions and Localizations, Lect. Notes Math., 304, Springer, Berlin, 1972 | DOI | MR | Zbl

[22] Bowshell R. A., Schultz P., “Unital rings whose additive endomorphisms commute”, Math. Ann., 228 (1977), 197–214 | DOI | MR | Zbl

[23] Braun G., Göbel R., “E-algebras whose torsion part is not cyclic”, Proc. Amer. Math. Soc., 133:8 (2005), 2251–2258 | DOI | MR | Zbl

[24] Buckner J., Dugas M., “Quasi-localizations of $\mathbb Z$”, Israel J. Math., 160 (2007), 349–370 | DOI | MR | Zbl

[25] Casacuberta C., “On structures preserved by idempotent transformations of groups and homotopy types”, Crystallographic Groups and Their Generalizations, Proc. of the Workshop (Katholieke Universiteit Leuven, Campus Kortrijk, Belgium, May 26–28, 1999), v. II, Contemp. Math., 262, ed. P. Igodt, Amer. Math. Soc., Providence, 2000, 39–68 | DOI | MR | Zbl

[26] Casacuberta C., Descheemaeker An., “Relative group completions”, J. Algebra, 285 (2005), 451–469 | DOI | MR | Zbl

[27] Casacuberta C., Golasiński M., Tonks A., “Homotopy localization of groupoids”, Forum Math., 18 (2006), 967–982 | DOI | MR | Zbl

[28] Casacuberta C., Peschke G., Pfenninger M., “On orthogonal pairs in categories and localization”, Adams Memorial Symposium on Algebraic Topology, Proc. of a Symposium (Manchester, UK, July 1990), v. 1, London Math. Soc. Lect. Notes Ser., 175, eds. N. Ray, G. Walker, Cambridge Univ. Press, Cambridge, 1992, 211–223 | MR

[29] Casacuberta C., Scevenels D., “On the existence of group localizations under large cardinals axioms”, Rev. Real Acad. Cienc. Ser. A Mat., 95 (2001), 163–170 | MR | Zbl

[30] Dugas M., “Large E-modules exist”, J. Algebra, 142 (1991), 405–413 | DOI | MR | Zbl

[31] Dugas M., “Localizations of torsion-free Abelian groups”, J. Algebra, 278 (2004), 411–429 | DOI | MR | Zbl

[32] Dugas M., “Localizations of torsion-free Abelian groups. II”, J. Algebra, 284 (2005), 811–823 | DOI | MR | Zbl

[33] Dugas M., Feigelstock S., “Self-free modules and E-rings”, Commun. Algebra, 31:3 (2003), 1387–1402 | DOI | MR | Zbl

[34] Dugas M., Feigelstock S., “$A$-rings”, Colloq. Math., 96:2 (2003), 277–291 | DOI | MR

[35] Dugas M., Feigelstock S., Hausen J., “$M$-free Abelian groups”, Rocky Mountain J. Math., 32:4 (2002), 1367–1382 | DOI | MR | Zbl

[36] Dugas M., Göbel R., “On radicals and products”, Pacific J. Math., 118 (1985), 79–104 | DOI | MR | Zbl

[37] Dugas M., Mader A., Vinsonhaler C., “Large E-rings exist”, J. Algebra, 108:1 (1987), 88–101 | DOI | MR | Zbl

[38] Dugas M., Vinsonhaler C., “Two-sided E-rings”, J. Pure Appl. Algebra, 185 (2003), 87–102 | DOI | MR | Zbl

[39] Farjoun E. D., Cellular Spaces, Null Spaces and Homotopy Localization, Lect. Notes Math., 1622, Springer, Berlin, 1996 | MR

[40] Fuchs L., Lee S. B., “Superdecomposable $\mathrm E(R)$-algebras”, Commun. Algebra, 33 (2005), 3009–3016 | DOI | MR | Zbl

[41] Göbel R., Goldsmith B., “Classifying E-algebras over Dedekind domains”, J. Algebra, 306 (2006), 566–575 | DOI | MR | Zbl

[42] Göbel R., Herden D., “The existence of large $\mathrm E(R)$-algebras that are sharply transitive modules”, Commun. Algebra, 36 (2008), 120–131 | DOI | MR | Zbl

[43] Göbel R., Strüngmann L., “Almost-free $\mathrm E(R)$-algebras and $\mathrm E(A,R)$-modules”, Fund. Math., 169 (2001), 175–192 | DOI | MR | Zbl

[44] Göbel R., Trlifaj J., Approximations and Endomorphism Algebras of Modules, Walter de Gruyter, Berlin, 2006 | MR | Zbl

[45] Kato T., “Duality between colocalization and localization”, J. Algebra, 55 (1978), 351–374 | DOI | MR | Zbl

[46] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht, 2003 | MR | Zbl

[47] Krylov P. A., Tuganbaev A. A., Modules over Discrete Valuation Domains, De Gruyter Exp. Math., 43, Walter de Gruyter, Berlin, 2008 | DOI | Zbl

[48] Libman A., “Cardinality and nilpotency of localizations of groups and $G$-modules”, Israel J. Math., 117 (2000), 221–237 | DOI | MR | Zbl

[49] Mac Lane S., Categories for the Working Mathematician, Springer, Berlin, 1971, 1998 | MR

[50] Mader A., Vinsonhaler C., “Torsion-free E-modules”, J. Algebra, 115:2 (1988), 401–411 | DOI | MR | Zbl

[51] Ohtake K., “Colocalization and localization”, J. Pure Appl. Algebra, 11:13 (1977), 217–241 | DOI | MR

[52] Ohtake K., “Equivalence between colocalization and localization in Abelian categories with applications to the theory of modules”, J. Algebra, 79 (1982), 169–205 | DOI | MR | Zbl

[53] Pierce R. S., “E-modules”, Abelian Group Theory, Proc. of the 1987 (4th) Perth Conf. (August 9–14, 1987, Perth, Western Australia), Contemp. Math., 87, eds. L. Fuchs, R. Göbel, Ph. Schultz, Amer. Math. Soc., Providence, 1989, 221–240 | DOI | MR

[54] Rodríguez J. L., Scherer J., Strüngmann L., “On localizations of torsion Abelian groups”, Fund. Math., 183 (2004), 123–138 | DOI | MR | Zbl

[55] Rowen L. H., Ring Theory, Academic Press, Boston, 1988 | MR | Zbl

[56] Schultz P., “The endomorphism ring of the additive group of a ring”, J. Aust. Math. Soc., 15 (1973), 60–69 | DOI | MR | Zbl

[57] Stenström B., Rings and Modules of Quotients, Lect. Notes Math., 237, Springer, Berlin, 1971 | MR | Zbl

[58] Stenström B., Rings of Quotients: An Introduction to Methods of Ring Theory, Springer, Berlin, 1975 | MR | Zbl

[59] Tachikawa H., Ohtake K., “Colocalization and localization in Abelian categories”, J. Algebra, 56:1 (1979), 1–23 | DOI | MR | Zbl

[60] Tuganbaev A. A., Semidistributive Rings and Modules, Kluwer Academic, Dordrecht, 1998 | MR | Zbl

[61] Vinsonhaler C., “E-rings and related structures”, Non-Noetherian Commutative Ring Theory, Math. Its Appl., 520, eds. S. T. Chapman, S. Glaz, Kluwer Academic, Dordrecht, 2000, 387–402 | MR | Zbl

[62] Warfield R. B. (Jr.), “Homomorphisms and duality for torsion-free groups”, Math. Z., 107 (1968), 189–200 | DOI | MR | Zbl