On a~property of Abelian groups related to direct sums and products
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 39-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T$ be an infinite set of prime numbers, $\mathcal M$ be a set of groups $\{\mathbb Z(p)\mid p \in T\}$. An Abelian group $A$ is said to be $\mathcal M$-large if $$ \mathrm{Hom}\Bigl(A,\bigoplus_{p\in T}\mathbb Z(p)\Bigr)=\mathrm{Hom}\Bigl(A,\prod_{p\in T}\mathbb Z(p)\Bigr). $$ This paper presents a characterization of $\mathcal M$-large torsion-free and mixed groups.
@article{FPM_2010_16_7_a1,
     author = {O. M. Babanskaya (Katerinchuk) and P. A. Krylov},
     title = {On a~property of {Abelian} groups related to direct sums and products},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/}
}
TY  - JOUR
AU  - O. M. Babanskaya (Katerinchuk)
AU  - P. A. Krylov
TI  - On a~property of Abelian groups related to direct sums and products
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 39
EP  - 47
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/
LA  - ru
ID  - FPM_2010_16_7_a1
ER  - 
%0 Journal Article
%A O. M. Babanskaya (Katerinchuk)
%A P. A. Krylov
%T On a~property of Abelian groups related to direct sums and products
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 39-47
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/
%G ru
%F FPM_2010_16_7_a1
O. M. Babanskaya (Katerinchuk); P. A. Krylov. On a~property of Abelian groups related to direct sums and products. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 39-47. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/

[1] Katerinchuk O. M., “O $K$-bolshikh i obobschënno $K$-bolshikh abelevykh gruppakh”, Fundament. i prikl. mat., 13:3 (2007), 51–60 | MR | Zbl

[2] Krylov P. A., Pakhomova E. G., “Abelevy gruppy kak in'ektivnye moduli nad koltsami endomorfizmov”, Fundament. i prikl. mat., 4:4 (1998), 1365–1384 | MR | Zbl

[3] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[4] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl

[5] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht, 2003 | MR | Zbl