On a~property of Abelian groups related to direct sums and products
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 39-47
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T$ be an infinite set of prime numbers, $\mathcal M$ be a set of groups $\{\mathbb Z(p)\mid p \in T\}$. An Abelian group $A$ is said to be $\mathcal M$-large if
$$
\mathrm{Hom}\Bigl(A,\bigoplus_{p\in T}\mathbb Z(p)\Bigr)=\mathrm{Hom}\Bigl(A,\prod_{p\in T}\mathbb Z(p)\Bigr).
$$
This paper presents a characterization of $\mathcal M$-large torsion-free and mixed groups.
@article{FPM_2010_16_7_a1,
author = {O. M. Babanskaya (Katerinchuk) and P. A. Krylov},
title = {On a~property of {Abelian} groups related to direct sums and products},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {39--47},
publisher = {mathdoc},
volume = {16},
number = {7},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/}
}
TY - JOUR AU - O. M. Babanskaya (Katerinchuk) AU - P. A. Krylov TI - On a~property of Abelian groups related to direct sums and products JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 39 EP - 47 VL - 16 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/ LA - ru ID - FPM_2010_16_7_a1 ER -
%0 Journal Article %A O. M. Babanskaya (Katerinchuk) %A P. A. Krylov %T On a~property of Abelian groups related to direct sums and products %J Fundamentalʹnaâ i prikladnaâ matematika %D 2010 %P 39-47 %V 16 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/ %G ru %F FPM_2010_16_7_a1
O. M. Babanskaya (Katerinchuk); P. A. Krylov. On a~property of Abelian groups related to direct sums and products. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 39-47. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/