On a property of Abelian groups related to direct sums and products
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 39-47
Let $T$ be an infinite set of prime numbers, $\mathcal M$ be a set of groups $\{\mathbb Z(p)\mid p \in T\}$. An Abelian group $A$ is said to be $\mathcal M$-large if $$ \mathrm{Hom}\Bigl(A,\bigoplus_{p\in T}\mathbb Z(p)\Bigr)=\mathrm{Hom}\Bigl(A,\prod_{p\in T}\mathbb Z(p)\Bigr). $$ This paper presents a characterization of $\mathcal M$-large torsion-free and mixed groups.
@article{FPM_2010_16_7_a1,
author = {O. M. Babanskaya (Katerinchuk) and P. A. Krylov},
title = {On a~property of {Abelian} groups related to direct sums and products},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {39--47},
year = {2010},
volume = {16},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/}
}
TY - JOUR AU - O. M. Babanskaya (Katerinchuk) AU - P. A. Krylov TI - On a property of Abelian groups related to direct sums and products JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 39 EP - 47 VL - 16 IS - 7 UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/ LA - ru ID - FPM_2010_16_7_a1 ER -
O. M. Babanskaya (Katerinchuk); P. A. Krylov. On a property of Abelian groups related to direct sums and products. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 7, pp. 39-47. http://geodesic.mathdoc.fr/item/FPM_2010_16_7_a1/
[1] Katerinchuk O. M., “O $K$-bolshikh i obobschënno $K$-bolshikh abelevykh gruppakh”, Fundament. i prikl. mat., 13:3 (2007), 51–60 | MR | Zbl
[2] Krylov P. A., Pakhomova E. G., “Abelevy gruppy kak in'ektivnye moduli nad koltsami endomorfizmov”, Fundament. i prikl. mat., 4:4 (1998), 1365–1384 | MR | Zbl
[3] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[4] Grinshpon S. Ya., Krylov P. A., “Fully invariant subgroups, full transitivity, and homomorphism groups of Abelian groups”, J. Math. Sci., 128:3 (2005), 2894–2997 | DOI | MR | Zbl
[5] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Kluwer Academic, Dordrecht, 2003 | MR | Zbl