Estimating the cardinality of a~difference subset of the discrete multi-torus~$\mathbb Z^n_3$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain an upper estimate for the cardinality of a subset of the discrete torus over a field of three elements of which any four points do not form a nonsingular parallelogram.
@article{FPM_2010_16_6_a2,
     author = {E. P. Davletyarova and A. A. Zhukova and A. A. Yudin},
     title = {Estimating the cardinality of a~difference subset of the discrete multi-torus~$\mathbb Z^n_3$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a2/}
}
TY  - JOUR
AU  - E. P. Davletyarova
AU  - A. A. Zhukova
AU  - A. A. Yudin
TI  - Estimating the cardinality of a~difference subset of the discrete multi-torus~$\mathbb Z^n_3$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 23
EP  - 32
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a2/
LA  - ru
ID  - FPM_2010_16_6_a2
ER  - 
%0 Journal Article
%A E. P. Davletyarova
%A A. A. Zhukova
%A A. A. Yudin
%T Estimating the cardinality of a~difference subset of the discrete multi-torus~$\mathbb Z^n_3$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 23-32
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a2/
%G ru
%F FPM_2010_16_6_a2
E. P. Davletyarova; A. A. Zhukova; A. A. Yudin. Estimating the cardinality of a~difference subset of the discrete multi-torus~$\mathbb Z^n_3$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 23-32. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a2/

[1] Artin E., Geometricheskaya algebra, Nauka, M., 1969 | MR | Zbl

[2] Babai L., Sós V., “Sidon sets in groups and induced subgraphs of Cayley graphs”, J. Combin., 6 (1985), 101–114 | DOI | MR | Zbl

[3] Chaimovich M., “Subset sum problem with different summands: Computations”, Discrete Appl. Math., 27 (1990), 277–282 | DOI | MR | Zbl

[4] Folkman J., “On the representation of integers as sums of distinct terms from a fixed sequence”, Can. J. Math., 18 (1966), 643–655 | DOI | MR | Zbl

[5] Freiman G. A., “Subset-sum problem with different summands”, Congr. Numer., 70 (1990), 207–215 | MR | Zbl

[6] Hamidoune Y. O., “Subsets with small sums in Abelian groups. I”, Eur. J. Combin., 18:5 (1997), 541–556 | DOI | MR | Zbl