Effective bounds for generalized linear global relations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper puts forward new effective lower bounds for the values of linear forms from certain series in non-Archimedian fields. The results obtained are related to the generalization of Siegel–Shidlovski's method.
@article{FPM_2010_16_6_a0,
     author = {T. R. Azamatov},
     title = {Effective bounds for generalized linear global relations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--6},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a0/}
}
TY  - JOUR
AU  - T. R. Azamatov
TI  - Effective bounds for generalized linear global relations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 3
EP  - 6
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a0/
LA  - ru
ID  - FPM_2010_16_6_a0
ER  - 
%0 Journal Article
%A T. R. Azamatov
%T Effective bounds for generalized linear global relations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 3-6
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a0/
%G ru
%F FPM_2010_16_6_a0
T. R. Azamatov. Effective bounds for generalized linear global relations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 6, pp. 3-6. http://geodesic.mathdoc.fr/item/FPM_2010_16_6_a0/

[1] Galochkin A. I., “Ob algebraicheskoi nezavisimosti znachenii $E$-funktsii v nekotorykh transtsendentnykh tochkakh”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1970, no. 5, 58–63 | Zbl

[2] Salikhov V. Kh., “Ob algebraicheskoi nezavisimosti znachenii gipergeometricheskikh $E$-funktsii”, DAN SSSR, 307:2 (1989), 284–287 | MR

[3] Chirskii V. G., “O globalnykh sootnosheniyakh”, Mat. zametki, 48:2 (1990), 123–127 | MR | Zbl

[4] Chirskii V. G., Arifmeticheskie svoistva ryadov v polyakh s nearkhimedovymi normirovaniyami, Izd-vo TsPI pri mekh.-mat. fakultete MGU, M., 2000

[5] Chirskii V. G., “Metod Zigelya–Shidlovskogo v $p$-adicheskoi oblasti”, Fundament. i prikl. mat., 11:6 (2005), 221–230 | MR | Zbl

[6] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[7] Bertrand D., Chirskii V. G., Yebbou J., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse Math. (6), 13:2 (2004), 241–260 | DOI | MR | Zbl

[8] Bombieri E., “On $G$-functions”, Recent Progress in Analytic Number Theory, v. 2, Academic Press, London, 1981, 1–68 | MR