Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_5_a6, author = {A. Laurin\v{c}ikas}, title = {Some value-distribution theorems for periodic {Hurwitz} zeta-functions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {79--92}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a6/} }
A. Laurinčikas. Some value-distribution theorems for periodic Hurwitz zeta-functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 79-92. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a6/
[1] Voronin S. M., “O differentsialnoi nezavisimosti $\zeta$-funktsii”, DAN SSSR, 209:6 (1973), 1264–1266 | MR | Zbl
[2] Voronin S. M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 475–486 | MR | Zbl
[3] Laurinchikas A. P., “Sovmestnaya universalnost obschikh ryadov Dirikhle”, Izv. RAN. Ser. mat., 69:1 (2005), 133–144 | DOI | MR | Zbl
[4] Laurinchikas A. P., “Funktsionalnaya nezavisimost periodicheskikh dzeta-funktsii Gurvitsa”, Mat. zametki, 83:1 (2008), 69–76 | DOI | MR | Zbl
[5] Postnikov A. G., “Obobschenie odnoi iz zadach Gilberta”, DAN SSSR, 107:4 (1956), 512–515 | MR | Zbl
[6] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcutta, 1981
[7] Bagchi B., “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181 (1982), 319–334 | DOI | MR | Zbl
[8] Bohr H., Jessen B., “Über die Wertverteilung der Riemannschen Zetafunktion”, Acta Math., 54 (1930), 1–35 | DOI | MR | Zbl
[9] Bohr H., Jessen B., “Über die Wertverteilung der Riemannschen Zetafunktion, II”, Acta Math., 58 (1932), 1–55 | DOI | MR | Zbl
[10] Garbaliauskienė V., Laurinčikas A., “Some analytic properties for $L$-functions of elliptic curves”, Proc. Inst. Math. NAN Belarus, 13 (2005), 75–82
[11] Garunkštis R., Laurinčikas A., “On one Hilbert's problem for the Lerch zeta-function”, Publ. Inst. Math., 65(79) (1999), 63–69 | MR
[12] Gonek S. M., Analytic properties of zeta- and $L$-functions, Thesis, Univ. Michigan, 1979 | MR
[13] Javtokas A., Laurinčikas A., “Universality of the periodic Hurwitz zeta-function”, Integral Transform. Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl
[14] Javtokas A., Laurinčikas A., “A joint universality theorem for periodic Hurwitz zeta-functions”, Bull. Aust. Math. Soc., 78 (2008), 13–33 | DOI | MR | Zbl
[15] Laurinčikas A., “Distibution des valeurs de certaines séries de Dirichlet”, C. R. Acad. Sci. Paris Sér. A, 289 (1979), 43–45 | MR | Zbl
[16] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996 | MR
[17] Laurinčikas A., “The universality of zeta-functions”, Acta Appl. Math., 78 (2003), 251–271 | DOI | MR | Zbl
[18] Laurinčikas A., “On the joint universality for periodic Hurwitz zeta-functions”, Lithuanian Math. J., 48 (2008), 79–91 | DOI | MR | Zbl
[19] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer, Dordrecht, 2002 | MR | Zbl
[20] Laurinčikas A., Matsumoto K., “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl
[21] Laurinčikas A., Matsumoto K., “The joint universality of twisted antomorphic $L$-functions”, J. Math. Soc. Japan, 56:3 (2004), 235–251 | MR
[22] Laurinčikas A., Matsumoto K., “Joint value distribution theorems on Lerch zeta-functions, II”, Liet. Mat. Rink., 46:3 (2006), 332–350 | MR | Zbl
[23] Laurinčikas A., Matsumoto K., “Joint value distribution theorems on Lerch zeta-functions, III”, Analytic and Probabilistic Methods in Number Theory, TEV, Vilnius, 2007, 87–98 | MR | Zbl
[24] Matsumoto K., “Discrepancy estimates for the value-distribution of the Riemann zeta-function, I”, Acta Arith., 48 (1987), 167–190 | MR | Zbl
[25] Matsumoto K., “Discrepancy estimates for the value-distribution of the Riemann zeta-function, III”, Acta Arith., 50 (1988), 315–337 | MR | Zbl
[26] Matsumoto K., “Probabilistic value-distribution theory of zeta-functions”, Sugaku Expositions, 17:1 (2004), 51–71 | MR | Zbl
[27] Matsumoto K., “An introduction to the value-distribution theory of zeta-functions”, Siauliai Math. Semin., 1(9) (2006), 61–83 | MR | Zbl
[28] Ostrowski A., “Über Dirichletsche Reihen und algebraische Differentialgleichungen”, Math. Z., 8 (1920), 241–298 | DOI | MR | Zbl
[29] Steuding J., Value-distribution of $L$-functions and allied zeta-functions – with an emphasis on aspects of universality: Habilitationschrift, J. W. Goethe-Universität, Frankfurt, 2003
[30] Šleževičien. e R., “The joint universality of twists of Dirichlet series with multiplicative coefficients”, Analytic and Probabilistic Methods in Number Theory, Proc. of the Third Int. Conf. in Honour of J. Kubilius (Palanga, 2001), eds. A. Dubickas et al., TEV, Vilnius, 2002, 303–319 | MR | Zbl
[31] Voronin S. M., “On the functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 | MR | Zbl