Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_5_a0, author = {V. V. Beresnevich and S. L. Velani}, title = {Simultaneous inhomogeneous {Diophantine} approximation on manifolds}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--17}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a0/} }
TY - JOUR AU - V. V. Beresnevich AU - S. L. Velani TI - Simultaneous inhomogeneous Diophantine approximation on manifolds JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 3 EP - 17 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a0/ LA - ru ID - FPM_2010_16_5_a0 ER -
V. V. Beresnevich; S. L. Velani. Simultaneous inhomogeneous Diophantine approximation on manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 5, pp. 3-17. http://geodesic.mathdoc.fr/item/FPM_2010_16_5_a0/
[1] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967
[2] Sprindzhuk V. G., “Dostizheniya i problemy teorii diofantovykh priblizhenii”, Uspekhi mat. nauk, 35:4 (1980), 3–68 | MR | Zbl
[3] Beresnevich V. V., “A Groshev type theorem for convergence on manifolds”, Acta Math. Hungar., 94:1–2 (2002), 99–130 | DOI | MR | Zbl
[4] Beresnevich V. V., Bernik V. I., “On a metrical theorem of W. Schmidt”, Acta Arith., 75:3 (1996), 219–233 | MR | Zbl
[5] Beresnevich V. V., Velani S. L., “A Mass Transference Principle and the Duffin–Schaeffer conjecture for Hausdorff measures”, Ann. Math., 164 (2006), 971–992 | DOI | MR | Zbl
[6] Beresnevich V. V., Velani S. L., “Schmidt's theorem, Hausdorff measures and slicing”, Int. Math. Res. Notices, 2006 (2006), ID 48794 | MR | Zbl
[7] Beresnevich V. V., Velani S. L., “An inhomogeneous transference principle and Diophantine approximation”, Proc. London Math. Soc., 101:3 (2010), 821–851 | DOI | MR | Zbl
[8] Bugeaud Y., Laurent M., “On exponents of homogeneous and inhomogeneous Diophantine approximation”, Moscow Math. J., 5:4 (2005), 747–766, 972 | MR | Zbl
[9] Cassels J. W. S., An introduction to Diophantine Approximation, Cambridge Univ. Press, Cambridge, 1957 | MR | Zbl
[10] Kleinbock D., “Extremal subspaces and their submanifolds”, Geom. Funct. Anal., 13:2 (2003), 437–466 | DOI | MR | Zbl
[11] Kleinbock D. Y., Margulis G. A., “Flows on homogeneous spaces and Diophantine approximation on manifolds”, Ann. Math., 148 (1998), 339–360 | DOI | MR | Zbl
[12] Mahler K., “Über das Maßder Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR | Zbl
[13] Schmidt W. M., “Metrische Sätze über simultane Approximation abhängiger Größen”, Monatsh. Math., 63 (1964), 154–166 | DOI | MR