Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_3_a9, author = {V. N. Latyshev}, title = {Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {193--203}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a9/} }
TY - JOUR AU - V. N. Latyshev TI - Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 193 EP - 203 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a9/ LA - ru ID - FPM_2010_16_3_a9 ER -
V. N. Latyshev. Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 193-203. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a9/
[1] Latyshev V. N., Nematrichnye mnogoobraziya assotsiativnykh algebr, Dis. $\dots$ dokt. fiz.-mat. nauk, M., 1977
[2] Latyshev V. N., Serbin D. S., “Standartnyi bazis $T$-ideala polinomialnykh tozhdestv algebry Grassmana”, Chebyshëvskii sb., 6:4(16) (2005), 134–138 | MR
[3] Maltsev Yu. N., “Bazis tozhdestv algebry verkhnikh treugolnykh matrits”, Algebra i logika, 10:4 (1971), 393–400 | MR | Zbl
[4] Schigolev V. V., Beskonechno baziruemye $T$-prostranstva i $T$-idealy, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2002
[5] Latyshev V. N., “A general version of standard basis and its application to $T$-ideals”, Acta Appl. Math., 85 (2005), 219–223 | DOI | MR | Zbl
[6] Specht W., “Gesetze in Ringen”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl