Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 193-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the definition of a standard basis of a $T$-ideal of the free associative algebra over a field of zero characteristic and indicate some basis called canonical in the linear space of $n$-linear forms. Using this basis, we construct a standard basis in the $T$-ideal of identities satisfied by the algebra of upper triangular $(n\times n)$-matrices.
@article{FPM_2010_16_3_a9,
     author = {V. N. Latyshev},
     title = {Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--203},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a9/}
}
TY  - JOUR
AU  - V. N. Latyshev
TI  - Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 193
EP  - 203
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a9/
LA  - ru
ID  - FPM_2010_16_3_a9
ER  - 
%0 Journal Article
%A V. N. Latyshev
%T Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 193-203
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a9/
%G ru
%F FPM_2010_16_3_a9
V. N. Latyshev. Standard basis in the $T$-ideal formed by polynomial identities of triangular matrices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 193-203. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a9/

[1] Latyshev V. N., Nematrichnye mnogoobraziya assotsiativnykh algebr, Dis. $\dots$ dokt. fiz.-mat. nauk, M., 1977

[2] Latyshev V. N., Serbin D. S., “Standartnyi bazis $T$-ideala polinomialnykh tozhdestv algebry Grassmana”, Chebyshëvskii sb., 6:4(16) (2005), 134–138 | MR

[3] Maltsev Yu. N., “Bazis tozhdestv algebry verkhnikh treugolnykh matrits”, Algebra i logika, 10:4 (1971), 393–400 | MR | Zbl

[4] Schigolev V. V., Beskonechno baziruemye $T$-prostranstva i $T$-idealy, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2002

[5] Latyshev V. N., “A general version of standard basis and its application to $T$-ideals”, Acta Appl. Math., 85 (2005), 219–223 | DOI | MR | Zbl

[6] Specht W., “Gesetze in Ringen”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl