On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 135-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to obtain the commutator relations and Frobenius relations in a relatively free algebra $F^{(l)}$ specified by the identity $[x_1,\dots,x_l]=0$ over a field of characteristic $p>0$. These relations for $l>3$ are analogous to the relations in the algebra $F^{(3)}$ and are applied to the $T$-spaces in the algebra $F^{(l)}$. In order to study the relations in $F^{(l)}$ in more detail, we construct a model algebra analogous to the Grassmann algebra.
@article{FPM_2010_16_3_a6,
     author = {A. V. Grishin and L. M. Tsybulya and A. A. Shokola},
     title = {On $T$-spaces and relations in relatively free, {Lie} nilpotent, associative algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--148},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a6/}
}
TY  - JOUR
AU  - A. V. Grishin
AU  - L. M. Tsybulya
AU  - A. A. Shokola
TI  - On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 135
EP  - 148
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a6/
LA  - ru
ID  - FPM_2010_16_3_a6
ER  - 
%0 Journal Article
%A A. V. Grishin
%A L. M. Tsybulya
%A A. A. Shokola
%T On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 135-148
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a6/
%G ru
%F FPM_2010_16_3_a6
A. V. Grishin; L. M. Tsybulya; A. A. Shokola. On $T$-spaces and relations in relatively free, Lie nilpotent, associative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 135-148. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a6/